2048這個小游戲大家都不陌生,應該都玩過,之前已經在網上見過各個版本的2048實現了,有JAVA、HTML5等,今天我就給大家來一個我自己在 實驗樓 學到的python版2048。所有代碼加起來才200行,不用很麻煩很累就可以寫一個 2048 游戲出來。
游戲的具體規則什么的就不多說了,自己親自去玩一下就清楚了。
導入需要的包
import curses
from random import randrange, choice
from collections import defaultdict
游戲主邏輯
用戶行為
用戶在玩游戲的主要輸入分為六種,"上,下,左,右,游戲重置,退出"用 actions
表示
actions = ['Up', 'Left', 'Down', 'Right', 'Restart', 'Exit']
分別用 W(上),A(左),S(下),D(右),R(重置),Q(退出),進行輸入來操作游戲,這里考慮到大寫鎖定鍵鎖定的情況:
letter_codes = [ord(ch) for ch in 'WASDRQwasdrq']
將輸入與行為進行關聯:
actions_dict = dict(zip(letter_codes, actions * 2))
用戶輸入處理
阻塞+循環,直到獲得用戶有效輸入才返回對應行為:
def get_user_action(keyboard):
char = "N"
while char not in actions_dict:
char = keyboard.getch()
return actions_dict[char]
矩陣轉置與矩陣逆轉
這兩個操作主要是用戶在操作游戲之后對棋盤狀態的變化以及修改,擁有這兩個函數能夠節省不少的代碼量。
矩陣轉置:
def transpose(field):
return [list(row) for row in zip(*field)]
矩陣逆轉(不是逆矩陣):
def invert(field):
return [row[::-1] for row in field]
創建棋盤
初始化棋盤的參數,可以指定棋盤的高和寬以及游戲勝利條件,默認是最經典的 4x4~2048。
class GameField(object):
def __init__(self, height=4, width=4, win=2048):
self.height = height #高
self.width = width #寬
self.win_value = 2048 #過關分數
self.score = 0 #當前分數
self.highscore = 0 #最高分
self.reset() #棋盤重置
棋盤操作
隨機生成一個 2 或者 4
def spawn(self):
new_element = 4 if randrange(100) > 89 else 2
(i,j) = choice([(i,j) for i in range(self.width) for j in range(self.height) if self.field[i][j] == 0])
self.field[i][j] = new_element
重置棋盤
def reset(self):
if self.score > self.highscore:
self.highscore = self.score
self.score = 0
self.field = [[0 for i in range(self.width)] for j in range(self.height)]
self.spawn()
self.spawn()
一行向左合並
(注:這一操作是在 move 內定義的,拆出來是為了方便閱讀)
def move_row_left(row):
def tighten(row): # 把零散的非零單元擠到一塊
new_row = [i for i in row if i != 0]
new_row += [0 for i in range(len(row) - len(new_row))]
return new_row
def merge(row): # 對鄰近元素進行合並
pair = False
new_row = []
for i in range(len(row)):
if pair:
new_row.append(2 * row[i])
self.score += 2 * row[i]
pair = False
else:
if i + 1 < len(row) and row[i] == row[i + 1]:
pair = True
new_row.append(0)
else:
new_row.append(row[i])
assert len(new_row) == len(row)
return new_row
#先擠到一塊再合並再擠到一塊
return tighten(merge(tighten(row)))
棋盤走一步
通過對矩陣進行轉置與逆轉,可以直接從左移得到其余三個方向的移動操作
def move(self, direction):
def move_row_left(row):
#一行向左合並
moves = {}
moves['Left'] = lambda field: [move_row_left(row) for row in field]
moves['Right'] = lambda field: invert(moves['Left'](invert(field)))
moves['Up'] = lambda field: transpose(moves['Left'](transpose(field)))
moves['Down'] = lambda field: transpose(moves['Right'](transpose(field)))
if direction in moves:
if self.move_is_possible(direction):
self.field = moves[direction](self.field)
self.spawn()
return True
else:
return False
判斷輸贏
def is_win(self):
return any(any(i >= self.win_value for i in row) for row in self.field)
def is_gameover(self):
return not any(self.move_is_possible(move) for move in actions)
判斷能否移動
def move_is_possible(self, direction):
def row_is_left_movable(row):
def change(i):
if row[i] == 0 and row[i + 1] != 0: # 可以移動
return True
if row[i] != 0 and row[i + 1] == row[i]: # 可以合並
return True
return False
return any(change(i) for i in range(len(row) - 1))
check = {}
check['Left'] = lambda field: any(row_is_left_movable(row) for row in field)
check['Right'] = lambda field: check['Left'](invert(field))
check['Up'] = lambda field: check['Left'](transpose(field))
check['Down'] = lambda field: check['Right'](transpose(field))
if direction in check:
return check[direction](self.field)
else:
return False
繪制游戲界面
(注:這一步是在棋盤類內定義的)
def draw(self, screen):
help_string1 = '(W)Up (S)Down (A)Left (D)Right'
help_string2 = ' (R)Restart (Q)Exit'
gameover_string = ' GAME OVER'
win_string = ' YOU WIN!'
def cast(string):
screen.addstr(string + '\n')
#繪制水平分割線
def draw_hor_separator():
line = '+' + ('+------' * self.width + '+')[1:]
separator = defaultdict(lambda: line)
if not hasattr(draw_hor_separator, "counter"):
draw_hor_separator.counter = 0
cast(separator[draw_hor_separator.counter])
draw_hor_separator.counter += 1
def draw_row(row):
cast(''.join('|{: ^5} '.format(num) if num > 0 else '| ' for num in row) + '|')
screen.clear()
cast('SCORE: ' + str(self.score))
if 0 != self.highscore:
cast('HGHSCORE: ' + str(self.highscore))
for row in self.field:
draw_hor_separator()
draw_row(row)
draw_hor_separator()
if self.is_win():
cast(win_string)
else:
if self.is_gameover():
cast(gameover_string)
else:
cast(help_string1)
cast(help_string2)
完成主邏輯
完成以上工作后,我們就可以補完主邏輯了!
def main(stdscr):
def init():
#重置游戲棋盤
game_field.reset()
return 'Game'
def not_game(state):
#畫出 GameOver 或者 Win 的界面
game_field.draw(stdscr)
#讀取用戶輸入得到action,判斷是重啟游戲還是結束游戲
action = get_user_action(stdscr)
responses = defaultdict(lambda: state) #默認是當前狀態,沒有行為就會一直在當前界面循環
responses['Restart'], responses['Exit'] = 'Init', 'Exit' #對應不同的行為轉換到不同的狀態
return responses[action]
def game():
#畫出當前棋盤狀態
game_field.draw(stdscr)
#讀取用戶輸入得到action
action = get_user_action(stdscr)
if action == 'Restart':
return 'Init'
if action == 'Exit':
return 'Exit'
if game_field.move(action): # move successful
if game_field.is_win():
return 'Win'
if game_field.is_gameover():
return 'Gameover'
return 'Game'
state_actions = {
'Init': init,
'Win': lambda: not_game('Win'),
'Gameover': lambda: not_game('Gameover'),
'Game': game
}
curses.use_default_colors()
game_field = GameField(win=32)
state = 'Init'
#狀態機開始循環
while state != 'Exit':
state = state_actions[state]()
運行
填上最后一行代碼:
curses.wrapper(main)
運行看看吧!
$ python 2048.py
詳細代碼參見:http://git.shiyanlou.com/littlemonkey/shiyanlou_cs368/src/master/2048.py