Given a complete binary tree, count the number of nodes.
In a complete binary tree every level, except possibly the last, is completely filled, and all nodes in the last level are as far left as possible. It can have between 1 and 2h nodes inclusive at the last level h.
對於完全二叉樹,去掉最后一層,就是一棵滿二叉樹,我們知道高度為 h 的滿二叉樹結點的個數為 2^h - 1 個,所以要知道一棵完全二叉樹的結點個數,只需知道最后一層有多少個結點。而完全二叉樹最后一層結點是從左至右連續的,所以我們可以依次給它們編一個號,然后二分搜索最后一個葉子結點。我是這樣編號的,假設最后一層在 h 層,那么一共有 2^(h-1) 個結點,一共需要 h - 1 位來編號,從根結點出發,向左子樹走編號為 0, 向右子樹走編號為 1,那么最后一層的編號正好從0 ~ 2^(h-1) - 1。復雜度為 O(h*log(2^(h-1))) = O(h^2)。下面是AC代碼。
1 /** 2 * Definition for a binary tree node. 3 * struct TreeNode { 4 * int val; 5 * TreeNode *left; 6 * TreeNode *right; 7 * TreeNode(int x) : val(x), left(NULL), right(NULL) {} 8 * }; 9 */ 10 class Solution { 11 public: 12 bool isOK(TreeNode *root, int h, int v) { 13 TreeNode *p = root; 14 for (int i = h - 2; i >= 0; --i) { 15 if (v & (1 << i)) p = p->right; 16 else p = p->left; 17 } 18 return p != NULL; 19 } 20 21 int countNodes(TreeNode* root) { 22 if (root == NULL) return 0; 23 TreeNode *p = root; 24 int h = 0; 25 while (p != NULL) { 26 p = p->left; 27 ++h; 28 } 29 int l = 0, r = (1 << (h - 1)) - 1, m; 30 while (l <= r) { 31 m = l + ((r - l) >> 1); 32 if (isOK(root, h, m)) l = m + 1; 33 else r = m - 1; 34 } 35 return (1 << (h - 1)) + r; 36 } 37 };
或者可以用遞歸的方法,對於這個問題,如果從某節點一直向左的高度 = 一直向右的高度, 那么以該節點為root的子樹一定是complete binary tree. 而 complete binary tree的節點數,可以用公式算出 2^h - 1. 如果高度不相等, 則遞歸調用 return countNode(left) + countNode(right) + 1. 復雜度為O(h^2)。
該方法參考:http://blog.csdn.net/xudli/article/details/46385011
1 /** 2 * Definition for a binary tree node. 3 * struct TreeNode { 4 * int val; 5 * TreeNode *left; 6 * TreeNode *right; 7 * TreeNode(int x) : val(x), left(NULL), right(NULL) {} 8 * }; 9 */ 10 class Solution { 11 public: 12 int getHeight(TreeNode *root, bool tag) { 13 int h = 0; 14 while (root != NULL) { 15 if (tag) root = root->left; 16 else root = root->right; 17 ++h; 18 } 19 return h; 20 } 21 22 int countNodes(TreeNode* root) { 23 if (root == NULL) return 0; 24 int left = getHeight(root, true); 25 int right = getHeight(root, false); 26 if (left == right) return (1 << left) - 1; 27 else return countNodes(root->left) + countNodes(root->right) + 1; 28 } 29 };