在windows遠程提交任務給Hadoop集群(Hadoop 2.6)


我使用3台Centos虛擬機搭建了一個Hadoop2.6的集群。希望在windows7上面使用IDEA開發mapreduce程序,然后提交的遠程的Hadoop集群上執行。經過不懈的google終於搞定

 
 
開始我使用hadoop的eclipse插件來執行job,竟然成功了,后來發現mapreduce是在本地執行的,根本沒有提交到集群上。我把hadoop的4個配置文件加上后就開始出現了問題。
 

1:org.apache.hadoop.util.Shell$ExitCodeException: /bin/bash: line 0: fg: no job control 

網上說要修改源碼,在Hadoop2.6已經合並了那個補丁。這個錯誤怎么解決的也忘記了
 

2:Stack trace: ExitCodeException exitCode=1:

 

3:Error: Could not find or load main class org.apache.hadoop.mapreduce.v2.app.MRAppMaster

 

4:Error: java.lang.RuntimeExceptionjava.lang.ClassNotFoundException: Class WordCount$Map not found

 

 
按照我的步驟走,這些問題都能解決,我使用的IDE是IDEA
1:復制Hadoop的4個配置文件放到src目錄下面:core-site.xml,hdfs-site.xml,log4j.properties,mapred-site.xml,yarn-site.xml
 
2:配置mapred-site.xml
<configuration>
    <property>
        <name>mapreduce.framework.name</name>
        <value>yarn</value>
    </property>
    <property>
        <name>mapred.remote.os</name>
        <value>Linux</value>
    </property>
    <property>
        <name>mapreduce.app-submission.cross-platform</name>
        <value>true</value>
    </property>
    <property>
    <name>mapreduce.application.classpath</name>
    <value>
        /opt/hadoop-2.6.0/etc/hadoop,
        /opt/hadoop-2.6.0/share/hadoop/common/*,
        /opt/hadoop-2.6.0/share/hadoop/common/lib/*,
        /opt/hadoop-2.6.0/share/hadoop/hdfs/*,
        /opt/hadoop-2.6.0/share/hadoop/hdfs/lib/*,
        /opt/hadoop-2.6.0/share/hadoop/mapreduce/*,
        /opt/hadoop-2.6.0/share/hadoop/mapreduce/lib/*,
        /opt/hadoop-2.6.0/share/hadoop/yarn/*,
        /opt/hadoop-2.6.0/share/hadoop/yarn/lib/*
    </value>
</property>    
    <property>
        <name>mapreduce.jobhistory.address</name>
        <value>master:10020</value>
    </property>
       <property>
                <name>mapreduce.jobhistory.webapp.address</name>
                <value>master:19888</value>
        </property>
</configuration>

 

注意mapreduce.application.classpath一定是絕對路徑,不要搞什么$HADOOP_HOME,我這里反正是報錯的
 
3:修改yarn-site.xml
  1. <configuration>
    <!-- Site specific YARN configuration properties -->
      <property>
            <name>yarn.nodemanager.aux-services</name>
            <value>mapreduce_shuffle</value>
        </property>
        <property>
            <name>yarn.resourcemanager.address</name>
            <value>master:8032</value>
        </property>
    <property>
        <name>yarn.application.classpath</name>
        <value>
            /opt/hadoop-2.6.0/etc/hadoop,
            /opt/hadoop-2.6.0/share/hadoop/common/*,
            /opt/hadoop-2.6.0/share/hadoop/common/lib/*,
            /opt/hadoop-2.6.0/share/hadoop/hdfs/*,
            /opt/hadoop-2.6.0/share/hadoop/hdfs/lib/*,
            /opt/hadoop-2.6.0/share/hadoop/mapreduce/*,
            /opt/hadoop-2.6.0/share/hadoop/mapreduce/lib/*,
            /opt/hadoop-2.6.0/share/hadoop/yarn/*,
            /opt/hadoop-2.6.0/share/hadoop/yarn/lib/*
        </value>
      </property>
    </configuration>

     


注意yarn.application.classpath一定是絕對路徑,不要搞什么$HADOOP_HOME
 
4:看下我的代碼
  1. package com.gaoxing.hadoop;
    
    import java.io.IOException;
    import java.security.PrivilegedExceptionAction;
    import java.util.StringTokenizer;
    
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.Reducer;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    import org.apache.hadoop.security.UserGroupInformation;
    import org.apache.hadoop.util.GenericOptionsParser;
    
    public class WordCount {
        //繼承mapper接口,設置map的輸入類型為<Object,Text>
        //輸出類型為<Text,IntWritable>
        public static class Map extends Mapper<Object,Text,Text,IntWritable>{
            //one表示單詞出現一次
            private static IntWritable one = new IntWritable(1);
            //word存儲切下的單詞
            private Text word = new Text();
            public void map(Object key,Text value,Context context) throws IOException,InterruptedException{
                //對輸入的行切詞
                StringTokenizer st = new StringTokenizer(value.toString());
                while(st.hasMoreTokens()){
                    word.set(st.nextToken());//切下的單詞存入word
                    context.write(word, one);
                }
            }
        }
        //繼承reducer接口,設置reduce的輸入類型<Text,IntWritable>
        //輸出類型為<Text,IntWritable>
        public static class Reduce extends Reducer<Text,IntWritable,Text,IntWritable>{
            //result記錄單詞的頻數
            private static IntWritable result = new IntWritable();
            public void reduce(Text key,Iterable<IntWritable> values,Context context) throws IOException,InterruptedException{
                int sum = 0;
                //對獲取的<key,value-list>計算value的和
                for(IntWritable val:values){
                    sum += val.get();
                }
                //將頻數設置到result
                result.set(sum);
                //收集結果
                context.write(key, result);
            }
        }
        /**
         * @param args
         */
        public static void main(String[] args) throws Exception{
            Configuration conf = new Configuration();
           // conf.set("mapred.remote.os","Linux");
           // conf.set("yarn.resourcemanager.address","master:8032");
           // conf.set("mapreduce.framework.name","yarn");
            conf.set("mapred.jar","D:\\IdeaProjects\\hadooplearn\\out\\artifacts\\hadoo.jar");
            //conf.set("mapreduce.app-submission.cross-platform","true");
            Job job = Job.getInstance(conf);
            job.setJobName("test");
            //配置作業各個類
            job.setJarByClass(WordCount.class);
            job.setMapperClass(Map.class);
            job.setCombinerClass(Reduce.class);
            job.setReducerClass(Reduce.class);
            job.setOutputKeyClass(Text.class);
            job.setOutputValueClass(IntWritable.class);
            FileInputFormat.addInputPath(job, new Path("hdfs://master:9000/tmp/hbase-env.sh"));
            FileOutputFormat.setOutputPath(job, new Path("hdfs://master:9000/tmp/out11"));
            System.exit(job.waitForCompletion(true) ? 0 : 1);
        }
    
    }

     


conf . set ( "mapred.jar" , "D:\\IdeaProjects\\hadooplearn\\out\\artifacts\\hadoo.jar" );這是最重要的一句,不然會報上面第4個問題
 
IDEA中有個功能就是編譯的時候打包:

 
下班了。
 
 
 
 






免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM