“大 O記法”:在這種描述中使用的基本參數是 n,即問題實例的規模,把復雜性或運行時間表達為n的函數。
注意:“O”表示量級 (order),比如說“二分檢索是 O(logn)的”,也就是說它需要“通過logn量級的步驟去檢索一個規模為n的數組”記法 O ( f(n) )表示當 n增大時,運行時間至多將以正比於 f(n)的速度增長。
這種漸進估計對算法的理論分析和大致比較是非常有價值的,但在實踐中細節也可能造成差異。例如,一個低附加代價的O(n2)算法在n較小的情況下可能比一個高附加代價的 O(nlogn)算法運行得更快。當然,隨着n足夠大以后,具有較慢上升函數的算法必然工作得更快。
O(1)
Temp=i;i=j;j=temp;
分析:
以上三條單個語句的頻度均為1,該程序段的執行時間是一個與問題規模n無關的常數。
算法的時間復雜度為常數階,記作T(n)=O(1)。
這里的1不是1,只是表示一個常數;
如果算法的執行時間不隨着問題規模n的增加而增長,即使算法中有上千條語句,其執行時間也不過是一個較大的常數。此類算法的時間復雜度是O(1)。
O(n2)
2.1. 交換i和j的內容
sum=0; (一次)
for(i=1;i<=n;i++) (n次 )
for(j=1;j<=n;j++) (n2次 )
sum++; (n2次 )
解:T(n)=2*n2+n+1 =O(n2)
2.2.
for (i=1;i<n;i++)(n-1次)
{
y=y+1; //1
for (j=0;j<=(2*n);j++)(2*n+1次)
x++; //2
}
解: 語句1的頻度是n-1
語句2的頻度是(n-1)*(2*n+1)=2*n2-n-1
f(n)=2*n2-n-1+(n-1)=2*n2-2
該程序的時間復雜度T(n)=O(n2).
O(n)
2.3.
a=0;
b=1; //1
for (i=1;i<=n;i++) //2
{
s=a+b; //3
b=a; //4
a=s; //5
}
解: 語句1的頻度:2,
語句2的頻度: n,
語句3的頻度: n-1,
語句4的頻度:n-1,
語句5的頻度:n-1,
T(n)=2+n+3(n-1)=4n-1=O(n).
O(log2n )
2.4.
i=1; //1
while (i<=n)
i=i*2; //2
解: 語句1的頻度是1,
設語句2的頻度是f(n), 則:2f(n)<=n; f(n)<=log2n
取最大值f(n)= log2n,
T(n)=O(log2n )
O(n3)
2.5.
for(i=0;i<n;i++)
{
for(j=0;j<i;j++)
{
for(k=0;k<j;k++)
x=x+2;
}
}
解: 當i=m, j=k的時候,內層循環的次數為k當i=m時, j 可以取 0,1,...,m-1 , 所以這里最內循環共進行了0+1+...+m-1=(m-1)m/2次 ,所以i從0取到n, 則循環共進行了:
0+(1-1)*1/2+...+(n-1)n/2=n(n+1)(n-1)/6所以時間復雜度為O(n3).
我們還應該區分 算法的最壞情況的行為和期望行為。如快速排序的最壞情況運行時間是 O(n2),但期望時間是 O(nlogn)。通過每次都仔細地選擇基准值,我們有可能把平方情況 (即O(n2)情況)的概率減小到幾乎等於 0。在實際中,精心實現的快速排序一般都能以 (O(nlogn)時間運行。
下面是一些常用的記法:
訪問數組中的元素是常數時間操作,或說O(1)操作。一個算法 如 果能在每個步驟去掉一半數據元素,如二分檢索,通常它就取 O(logn)時間。用strcmp比較兩個具有n個字符的串需要O(n)時間。常規的矩陣乘算法是O(n3),因為算出每個元素都需要將n對元素相乘並加到一起,所有元素的個數是n2。
指數時間算法通常來源於需要 求出所有可能結果。例如,n個元素的集合共有2n個子集,所以要求出所有子集的算法將是O(2n)的。指數算法一般說來是太復雜了,除非n的值非常小,因為,在 這個問題中增加一個元素就導致運行時間加倍。不幸的是,確實有許多問題 (如著名的“巡回售貨員問題” ),到目前為止找到的算法都是指數的。如果我們真的遇到這種情況,通常應該用尋找近似最佳結果的算法替代之。
技巧1:
For(i=1; i<n; i*=2)
{
}
那么這個程序片段的時間復雜度就是:O(log2n);