[LeetCode] Best Time to Buy and Sell Stock III 買股票的最佳時間之三


 

Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete at most two transactions.

Note: You may not engage in multiple transactions at the same time (i.e., you must sell the stock before you buy again).

Example 1:

Input: [3,3,5,0,0,3,1,4]
Output: 6
Explanation: Buy on day 4 (price = 0) and sell on day 6 (price = 3), profit = 3-0 = 3.
             Then buy on day 7 (price = 1) and sell on day 8 (price = 4), profit = 4-1 = 3.

Example 2:

Input: [1,2,3,4,5]
Output: 4
Explanation: Buy on day 1 (price = 1) and sell on day 5 (price = 5), profit = 5-1 = 4.
             Note that you cannot buy on day 1, buy on day 2 and sell them later, as you are
             engaging multiple transactions at the same time. You must sell before buying again.

Example 3:

Input: [7,6,4,3,1]
Output: 0
Explanation: In this case, no transaction is done, i.e. max profit = 0.

 

這道是買股票的最佳時間系列問題中最難最復雜的一道,前面兩道 Best Time to Buy and Sell Stock 和 Best Time to Buy and Sell Stock II 的思路都非常的簡潔明了,算法也很簡單。而這道是要求最多交易兩次,找到最大利潤,還是需要用動態規划Dynamic Programming來解,而這里我們需要兩個遞推公式來分別更新兩個變量local和global,參見網友Code Ganker的博客,我們其實可以求至少k次交易的最大利潤,找到通解后可以設定 k = 2,即為本題的解答。我們定義local[i][j]為在到達第i天時最多可進行j次交易並且最后一次交易在最后一天賣出的最大利潤,此為局部最優。然后我們定義global[i][j]為在到達第i天時最多可進行j次交易的最大利潤,此為全局最優。它們的遞推式為:

local[i][j] = max(global[i - 1][j - 1] + max(diff, 0), local[i - 1][j] + diff)

global[i][j] = max(local[i][j], global[i - 1][j])

其中局部最優值是比較前一天並少交易一次的全局最優加上大於0的差值,和前一天的局部最優加上差值中取較大值,而全局最優比較局部最優和前一天的全局最優,代碼如下:

 

解法一:

class Solution {
public:
    int maxProfit(vector<int> &prices) {
        if (prices.empty()) return 0;
        int n = prices.size(), g[n][3] = {0}, l[n][3] = {0};
        for (int i = 1; i < prices.size(); ++i) {
            int diff = prices[i] - prices[i - 1];
            for (int j = 1; j <= 2; ++j) {
                l[i][j] = max(g[i - 1][j - 1] + max(diff, 0), l[i - 1][j] + diff);
                g[i][j] = max(l[i][j], g[i - 1][j]);
            }
        }
        return g[n - 1][2];
    }
};

 

下面這種解法用一維數組來代替二維數組,可以極大的節省了空間,由於覆蓋的順序關系,我們需要j從2到1,這樣可以取到正確的g[j-1]值,而非已經被覆蓋過的值,參見代碼如下:

 

解法二:

class Solution {
public:
    int maxProfit(vector<int> &prices) {
        if (prices.empty()) return 0;
        int g[3] = {0};
        int l[3] = {0};
        for (int i = 0; i < prices.size() - 1; ++i) {
            int diff = prices[i + 1] - prices[i];
            for (int j = 2; j >= 1; --j) {
                l[j] = max(g[j - 1] + max(diff, 0), l[j] + diff);
                g[j] = max(l[j], g[j]);
            }
        }
        return g[2];
    }
};

 

我們如果假設prices數組為1, 3, 2, 9, 那么我們來看每次更新時local 和 global 的值:

第一天兩次交易:      第一天一次交易:

local:    0 0 0       local:    0 0 0 

global:  0 0 0       global:  0 0 0

第二天兩次交易:      第二天一次交易:

local:    0 0 2       local:    0 2 2 

global:  0 0 2       global:  0 2 2

第三天兩次交易:      第三天一次交易:

local:    0 2 2       local:    0 1 2 

global:  0 2 2       global:  0 2 2

第四天兩次交易:      第四天一次交易:

local:    0 1 9       local:    0 8 9 

global:  0 2 9       global:  0 8 9

 

在網友@loveahnee的提醒下,發現了其實上述的遞推公式關於local[i][j]的可以稍稍化簡一下,我們之前定義的local[i][j]為在到達第i天時最多可進行j次交易並且最后一次交易在最后一天賣出的最大利潤,然后網友@fgvlty解釋了一下第 i 天賣第 j 支股票的話,一定是下面的一種:

1. 今天剛買的
那么 Local(i, j) = Global(i-1, j-1)
相當於啥都沒干

2. 昨天買的
那么 Local(i, j) = Global(i-1, j-1) + diff
等於Global(i-1, j-1) 中的交易,加上今天干的那一票

3. 更早之前買的
那么 Local(i, j) = Local(i-1, j) + diff
昨天別賣了,留到今天賣

但其實第一種情況是不需要考慮的,因為當天買當天賣不會增加利潤,完全是重復操作,這種情況可以歸納在global[i-1][j-1]中,所以我們就不需要max(0, diff)了,那么由於兩項都加上了diff,所以我們可以把diff抽到max的外面,所以更新后的遞推公式為:

local[i][j] = max(global[i - 1][j - 1], local[i - 1][j]) + diff

global[i][j] = max(local[i][j], global[i - 1][j])

 

類似題目:

Best Time to Buy and Sell Stock with Cooldown

Best Time to Buy and Sell Stock IV

Best Time to Buy and Sell Stock II

Best Time to Buy and Sell Stock

 

參考資料:

https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iii/

 

LeetCode All in One 題目講解匯總(持續更新中...)


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM