一個基本的socket建立順序是
Server端:
- socket()
- bind()
- listen()
- accept()
- recv()
Client端:
- socket()
- connect()
- send()
本文着重介紹Server端的socket()過程。
用戶使用socket時,首先會調用socket()函數創建一個socket。在lwip中實際調用的就是lwip_socket()函數。
代碼如下:
1 int
2 lwip_socket(int domain, int type, int protocol) 3 { 4 struct netconn *conn; 5 int i; 6
7 LWIP_UNUSED_ARG(domain); 8
9 /* create a netconn */
10 switch (type) { // 根據用戶傳入的type區分TCP、UDP和RAW
11 case SOCK_RAW: 12 conn = netconn_new_with_proto_and_callback(NETCONN_RAW, (u8_t)protocol, event_callback); 13 LWIP_DEBUGF(SOCKETS_DEBUG, ("lwip_socket(%s, SOCK_RAW, %d) = ", 14 domain == PF_INET ? "PF_INET" : "UNKNOWN", protocol)); 15 break; 16 case SOCK_DGRAM: 17 conn = netconn_new_with_callback( (protocol == IPPROTO_UDPLITE) ?
18 NETCONN_UDPLITE : NETCONN_UDP, event_callback); 19 LWIP_DEBUGF(SOCKETS_DEBUG, ("lwip_socket(%s, SOCK_DGRAM, %d) = ", 20 domain == PF_INET ? "PF_INET" : "UNKNOWN", protocol)); 21 break; 22 case SOCK_STREAM: 23 conn = netconn_new_with_callback(NETCONN_TCP, event_callback); // 例如TCP在這個case里。這里新建一個netconn結構體。netconn是用戶可見的socket和協議棧內部的protocol control block之間的橋梁,這里下文會分析
24 LWIP_DEBUGF(SOCKETS_DEBUG, ("lwip_socket(%s, SOCK_STREAM, %d) = ", 25 domain == PF_INET ? "PF_INET" : "UNKNOWN", protocol)); 26 break; 27 default: 28 LWIP_DEBUGF(SOCKETS_DEBUG, ("lwip_socket(%d, %d/UNKNOWN, %d) = -1\n", 29 domain, type, protocol)); 30 set_errno(EINVAL); 31 return -1; 32 } 33
34 if (!conn) { 35 LWIP_DEBUGF(SOCKETS_DEBUG, ("-1 / ENOBUFS (could not create netconn)\n")); 36 set_errno(ENOBUFS); 37 return -1; 38 } 39
40 i = alloc_socket(conn); // 開辟一個socket,這個函數也很重要
41
42 if (i == -1) { 43 netconn_delete(conn); 44 set_errno(ENFILE); 45 return -1; 46 } 47 conn->socket = i; 48 LWIP_DEBUGF(SOCKETS_DEBUG, ("%d\n", i)); 49 set_errno(0); 50 return i; 51 }
接下來我們分兩個部分,netconn_new_with_callback所創建的netconn結構體,以及alloc_socket所創建的socket。
1.創建netconn結構體
netconn_new_with_callback函數里只是一個簡單的調用。
netconn_new_with_callback
=>netconn_new_with_proto_and_callback
看一下netconn_new_with_proto_and_callback()這個函數:
1 /** 2 * Create a new netconn (of a specific type) that has a callback function. 3 * The corresponding pcb is also created. 4 * 5 * @param t the type of 'connection' to create (@see enum netconn_type) 6 * @param proto the IP protocol for RAW IP pcbs 7 * @param callback a function to call on status changes (RX available, TX'ed) 8 * @return a newly allocated struct netconn or 9 * NULL on memory error 10 */
11 struct netconn*
12 netconn_new_with_proto_and_callback(enum netconn_type t, u8_t proto, netconn_callback callback) 13 { 14 struct netconn *conn; 15 struct api_msg msg; 16
17 conn = netconn_alloc(t, callback); // 開辟一個netconn
18 if (conn != NULL ) { 19 msg.function = do_newconn; // do_newconn這個函數以msg的形式送給tcpip_thread()去處理,我們隨后會分析。這里需要知道do_newconn會開辟一個pcb,並和已有的conn綁定。
20 msg.msg.msg.n.proto = proto; 21 msg.msg.conn = conn; 22 TCPIP_APIMSG(&msg); 23
24 if (conn->err != ERR_OK) { 25 LWIP_ASSERT("freeing conn without freeing pcb", conn->pcb.tcp == NULL); 26 LWIP_ASSERT("conn has no op_completed", conn->op_completed != SYS_SEM_NULL); 27 LWIP_ASSERT("conn has no recvmbox", conn->recvmbox != SYS_MBOX_NULL); 28 LWIP_ASSERT("conn->acceptmbox shouldn't exist", conn->acceptmbox == SYS_MBOX_NULL); 29 sys_sem_free(conn->op_completed); 30 sys_mbox_free(conn->recvmbox); 31 memp_free(MEMP_NETCONN, conn); 32 return NULL; 33 } 34 } 35 return conn; 36 }
上述代碼中,有4行紅色的在我們分析socket中會經常看到。我們不妨先岔開話題,看一下這4行代碼。
api_msg做了什么
1 msg.function = do_newconn; 2 msg.msg.msg.n.proto = proto; 3 msg.msg.conn = conn; 4 TCPIP_APIMSG(&msg);
首先來看TCPIP_APIMSG這個宏做了什么:1 #define TCPIP_APIMSG(m) tcpip_apimsg(m)
1 /** 2 * Call the lower part of a netconn_* function 3 * This function is then running in the thread context 4 * of tcpip_thread and has exclusive access to lwIP core code. 5 * 6 * @param apimsg a struct containing the function to call and its parameters 7 * @return ERR_OK if the function was called, another err_t if not 8 */ 9 err_t 10 tcpip_apimsg(struct api_msg *apimsg) 11 { 12 struct tcpip_msg msg; 13 14 if (mbox != SYS_MBOX_NULL) { 15 msg.type = TCPIP_MSG_API; // 隨后在tcpip_thread()里解析這個msg時需要根據這個type確定走哪個分支 16 msg.msg.apimsg = apimsg; 17 sys_mbox_post(mbox, &msg); // mbox是一個全局mailbox,實際上是一個數組,元素是void*型指針,在tcpip_init里被初始化。這里把msg地址放到mbox里 18 sys_arch_sem_wait(apimsg->msg.conn->op_completed, 0); 19 return ERR_OK; 20 } 21 return ERR_VAL; 22 }
至此,一個TCPIP_MSG_API type的msg被放到了mbox這個mailbox里,接下來tcpip_thread要從這個mailbox里取msg並對其進行處理,主要就是調用msg里的function。如下:
1 /** 2 * The main lwIP thread. This thread has exclusive access to lwIP core functions 3 * (unless access to them is not locked). Other threads communicate with this 4 * thread using message boxes. 5 * 6 * It also starts all the timers to make sure they are running in the right 7 * thread context. 8 * 9 * @param arg unused argument 10 */ 11 static void 12 tcpip_thread(void *arg) 13 { 14 struct tcpip_msg *msg; 15 LWIP_UNUSED_ARG(arg); 16 17 ...................... 18 19 LOCK_TCPIP_CORE(); 20 while (1) { /* MAIN Loop */ 21 sys_mbox_fetch(mbox, (void *)&msg); 22 switch (msg->type) { 23 #if LWIP_NETCONN 24 case TCPIP_MSG_API: 25 LWIP_DEBUGF(TCPIP_DEBUG, ("tcpip_thread: API message %p\n", (void *)msg)); 26 msg->msg.apimsg->function(&(msg->msg.apimsg->msg)); // 這個function就是netconn_write()函數里賦值的do_newconn 27 break; 28 #endif /* LWIP_NETCONN */ 29 30 .............. 31 32 default: 33 break; 34 } 35 } 36 }
注意tcpip_thread()函數在tcpip.c(component\common\network\lwip\lwip_v1.3.2\src\api)里,可以認為是lwip api層的函數,只不過雖然名字叫api,但應用層並不是直接調用,應用層實際上是借mailbox與其交互的。當然用戶並不知道mailbox的存在,應用層只需要直接調用send()這個lwip api,后續放入mailbox以及tcpip_thread從mailbox取走,都是lwip自己完成的。
題外話結束。
至此,我們知道了do_newconn是怎么被調用到的了。現在我們看一下do_newconn的內容。
1 void
2 do_newconn(struct api_msg_msg *msg) 3 { 4 if(msg->conn->pcb.tcp == NULL) { 5 pcb_new(msg); 6 } 7 .......... 8 }
1 static err_t 2 pcb_new(struct api_msg_msg *msg) 3 { 4 .................... 5 /* Allocate a PCB for this connection */
6 switch(NETCONNTYPE_GROUP(msg->conn->type)) { 7 ................... 8 #if LWIP_TCP
9 case NETCONN_TCP: 10 msg->conn->pcb.tcp = tcp_new(); // 新建一個tcp_pcb結構體,並把這個pcb與conn綁定起來
11 if(msg->conn->pcb.tcp == NULL) { 12 msg->conn->err = ERR_MEM; 13 break; 14 } 15 setup_tcp(msg->conn); 16 break; 17 #endif /* LWIP_TCP */
18 ................. 19 } 20 ................ 21 }
原來如此,do_newconn主要是在開辟了一個conn之后,接着開辟一個pcb並與這個conn綁定。
2.創建socket
lwip_socket()接下來通過alloc_socket()創建了socket。
代碼如下:
1 /** 2 * Allocate a new socket for a given netconn. 3 * 4 * @param newconn the netconn for which to allocate a socket 5 * @return the index of the new socket; -1 on error 6 */
7 static int
8 alloc_socket(struct netconn *newconn) 9 { 10 int i; 11
12 /* Protect socket array */
13 sys_sem_wait(socksem); 14
15 /* allocate a new socket identifier */
16 for (i = 0; i < NUM_SOCKETS; ++i) { 17 if (!sockets[i].conn) { // 從系統socket列表:sockets[]里尋找還沒有被使用的
18 sockets[i].conn = newconn; // 找出一個未被使用的socket結構體,作為用戶調用socket() API申請到的socket結構體,並把它和新建的netconn綁定。
19 sockets[i].lastdata = NULL; 20 sockets[i].lastoffset = 0; 21 sockets[i].rcvevent = 0; 22 sockets[i].sendevent = 1; /* TCP send buf is empty */
23 sockets[i].flags = 0; 24 sockets[i].err = 0; 25 sys_sem_signal(socksem); 26 return i; // 僅返回一個int型的i,即用戶看不到這個socket結構體,只能socket結構體在socket列表里的index值,用戶能使用的也就是這個int值
27 } 28 } 29 sys_sem_signal(socksem); 30 return -1; 31 }
sockets[]是一個全局變量,存有系統所有的socket,注意它的類型是系統內部維護的socket結構體,不是用戶看到的int型。如下:
1 /** The global array of available sockets */
2 static struct lwip_socket sockets[NUM_SOCKETS];
至此,lwip_socket()新建了netconn、pcb和socket,並把這三者綁定在了一條線上。