Combination Sum II
Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
Each number in C may only be used once in the combination.
Note:
- All numbers (including target) will be positive integers.
- Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
- The solution set must not contain duplicate combinations.
For example, given candidate set 10,1,2,7,6,1,5
and target 8
,
A solution set is: [1, 7]
[1, 2, 5]
[2, 6]
[1, 1, 6]
解法一:
最直接的想法就是把所有子集都列出來,然后逐個計算和是否為target
但是考慮到空間復雜度,10個數的num數組就有210個子集,因此必須進行“剪枝”,去掉不可能的子集。
先對num進行排序。
在遍歷子集的過程中:
(1)單個元素大於target,則后續元素無需掃描了,直接返回結果。
(2)單個子集元素和大於target,則不用加入當前的子集容器了。
(3)單個子集元素和等於target,加入結果數組。
class Solution { public: vector<vector<int> > combinationSum2(vector<int> &num, int target) { vector<vector<int> > result; vector<vector<int> > subsets; vector<int> empty; subsets.push_back(empty); sort(num.begin(), num.end()); for(int i = 0; i < num.size();) {//for each number int count = 0; int cur = num[i]; if(cur > target) //end return result; while(i < num.size() && num[i] == cur) {//repeat count i ++; count ++; } int size = subsets.size(); //orinigal size instead of calling size() function for(int j = 0; j < size; j ++) { vector<int> sub = subsets[j]; int tempCount = count; while(tempCount --) { sub.push_back(cur); int sum = accumulate(sub.begin(), sub.end(), 0); if(sum == target) { result.push_back(sub); subsets.push_back(sub); } else if(sum < target) subsets.push_back(sub); } } } return result; } };
解法二:遞歸回溯
需要注意的是:
1、在同一層遞歸樹中,如果某元素已經處理並進入下一層遞歸,那么與該元素相同的值就應該跳過。否則將出現重復。
例如:1,1,2,3
如果第一個1已經處理並進入下一層遞歸1,2,3
那么第二個1就應該跳過,因為后續所有情況都已經被覆蓋掉。
2、相同元素第一個進入下一層遞歸,而不是任意一個
例如:1,1,2,3
如果第一個1已經處理並進入下一層遞歸1,2,3,那么兩個1是可以同時成為可行解的
而如果選擇的是第二個1並進入下一層遞歸2,3,那么不會出現兩個1的解了。
class Solution { public: vector<vector<int> > combinationSum2(vector<int> &num, int target) { sort(num.begin(), num.end()); vector<vector<int> > ret; vector<int> cur; Helper(ret, cur, num, target, 0); return ret; } void Helper(vector<vector<int> > &ret, vector<int> cur, vector<int> &num, int target, int position) { if(target == 0) ret.push_back(cur); else { for(int i = position; i < num.size() && num[i] <= target; i ++) { if(i != position && num[i] == num[i-1]) continue; cur.push_back(num[i]); Helper(ret, cur, num, target-num[i], i+1); cur.pop_back(); } } } };