Maximum Gap
Given an unsorted array, find the maximum difference between the successive elements in its sorted form.
Try to solve it in linear time/space.
Return 0 if the array contains less than 2 elements.
You may assume all elements in the array are non-negative integers and fit in the 32-bit signed integer range.
Credits:
Special thanks to @porker2008 for adding this problem and creating all test cases.
解法一:
先排序O(nlogn),再一次遍歷,得到maxGap
雖然不滿足O(n)的時間要求,但是最直觀的想法。
class Solution { public: int maximumGap(vector<int>& nums) { if(nums.empty() || nums.size() == 1) return 0; sort(nums.begin(), nums.end()); int ret = 0; for(int i = 1; i < nums.size(); i ++) ret = max(ret, nums[i]-nums[i-1]); return ret; } };
解法二:為了滿足O(n)復雜度,我嘗試了計數排序,但是會TLE。因此使用桶排序來做。
(計數排序可以看做是桶大小為1的桶排序,但由於桶數目太多導致遍歷時間過長。)
最大gap肯定是出現在后一個有效桶的min與前一個有效桶的max之間。
“有效”指的是忽略空桶。
class Solution { public: int maximumGap(vector<int>& nums) { if(nums.empty() || nums.size() == 1) return 0; int n = nums.size(); int minAll = *min_element(nums.begin(), nums.end()); int maxAll = *max_element(nums.begin(), nums.end()); // type conversion!!! double gap = ((double)(maxAll - minAll)) / (n - 1); // compute min and max element for each bucket vector<int> minV(n-1, INT_MAX); vector<int> maxV(n-1, INT_MIN); for(int i = 0; i < n; i ++) { if(nums[i] != maxAll) {// the bktId of maxAll will fall out of bucket range int bktId = (int)((nums[i]-minAll)/gap); minV[bktId] = min(minV[bktId], nums[i]); maxV[bktId] = max(maxV[bktId], nums[i]); } } int ret = 0; int curMax = maxV[0]; for(int i = 1; i < n-1; i ++) { if(minV[i] != INT_MAX) { ret = max(ret, minV[i]-curMax); curMax = maxV[i]; } } ret = max(ret, maxAll-curMax); return ret; } };