多線程可以共享全局變量,多進程不能。多線程中,所有子線程的進程號相同;多進程中,不同的子進程進程號不同。
1 #!/usr/bin/python 2 # -*- coding:utf-8 -*- 3 import os 4 import threading 5 import multiprocessing 6 count_thread = 0 7 count_process = 0 8 9 # worker function 10 def worker1(sign, lock): 11 global count_thread 12 lock.acquire() 13 count_thread += 1 14 print(sign, os.getpid()) 15 lock.release() 16 17 def worker2(sign, lock): 18 global count_process 19 lock.acquire() 20 count_process += 1 21 print(sign, os.getpid()) 22 lock.release() 23 # Main 24 print('Main:',os.getpid()) 25 26 # Multi-thread 27 record = [] 28 lock = threading.Lock() 29 for i in range(5): 30 thread = threading.Thread(target=worker1,args=('thread',lock)) 31 thread.start() 32 record.append(thread) 33 34 for thread in record: 35 thread.join() 36 37 # Multi-process 38 record = [] 39 lock = multiprocessing.Lock() 40 for i in range(5): 41 process = multiprocessing.Process(target=worker2,args=('process',lock)) 42 process.start() 43 record.append(process) 44 45 for process in record: 46 process.join() 47 48 49 print count_thread 50 print count_process
運行結果
('Main:', 3142)
('thread', 3142)
('thread', 3142)
('thread', 3142)
('thread', 3142)
('thread', 3142)
('process', 3148)
('process', 3149)
('process', 3150)
('process', 3151)
('process', 3152)
5
0
應該盡量避免多進程共享資源。多進程共享資源必然會帶來進程間相互競爭。而這種競爭又會造成race condition,我們的結果有可能被競爭的不確定性所影響。但如果需要,我們依然可以通過共享內存和Manager對象這么做。
1) 共享內存
用Python實現的例子:
1 import multiprocessing 2 3 def f(n, a): 4 n.value = 3.14 5 a[0] = 5 6 7 num = multiprocessing.Value('d', 0.0) 8 arr = multiprocessing.Array('i', range(10)) 9 10 p = multiprocessing.Process(target=f, args=(num, arr)) 11 p.start() 12 p.join() 13 14 print num.value 15 print arr[:]
這里我們實際上只有主進程和Process對象代表的進程。我們在主進程的內存空間中創建共享的內存,也就是Value和Array兩個對象。對象Value被設置成為雙精度數(d), 並初始化為0.0。而Array則類似於C中的數組,有固定的類型(i, 也就是整數)。在Process進程中,我們修改了Value和Array對象。回到主程序,打印出結果,主程序也看到了兩個對象的改變,說明資源確實在兩個進程之間共享。
2)Manager
Manager對象類似於服務器與客戶之間的通信 (server-client),與我們在Internet上的活動很類似。我們用一個進程作為服務器,建立Manager來真正存放資源。其它的進程可以通過參數傳遞或者根據地址來訪問Manager,建立連接后,操作服務器上的資源。在防火牆允許的情況下,我們完全可以將Manager運用於多計算機,從而模仿了一個真實的網絡情境。下面的例子中,我們對Manager的使用類似於shared memory,但可以共享更豐富的對象類型。
1 import multiprocessing 2 3 def f(x, arr, l): 4 x.value = 3.14 5 arr[0] = 5 6 l.append('Hello') 7 8 server = multiprocessing.Manager() 9 x = server.Value('d', 0.0) 10 arr = server.Array('i', range(10)) 11 l = server.list() 12 13 proc = multiprocessing.Process(target=f, args=(x, arr, l)) 14 proc.start() 15 proc.join() 16 17 print(x.value) 18 print(arr) 19 print(l)
Manager利用list()方法提供了表的共享方式。實際上你可以利用dict()來共享詞典,Lock()來共享threading.Lock(注意,我們共享的是threading.Lock,而不是進程的mutiprocessing.Lock。后者本身已經實現了進程共享)等。 這樣Manager就允許我們共享更多樣的對象。
參考資料:
http://blog.csdn.net/zhaozhi406/article/details/8137670
http://www.xuebuyuan.com/1968817.html
