歡迎轉載,轉載請注明出處,徽滬一郎。
概要
Spark應用開發實踐性非常強,很多時候可能都會將時間花費在環境的搭建和運行上,如果有一個比較好的指導將會大大的縮短應用開發流程。Spark Streaming中涉及到和許多第三方程序的整合,源碼中的例子如何真正跑起來,文檔不是很多也不詳細。
本篇主要講述如何運行KafkaWordCount,這個需要涉及Kafka集群的搭建,還是說的越仔細越好。
搭建Kafka集群
步驟1:下載kafka 0.8.1及解壓
wget https://www.apache.org/dyn/closer.cgi?path=/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
tar zvxf kafka_2.10-0.8.1.1.tgz
cd kafka_2.10-0.8.1.1
步驟2:啟動zookeeper
bin/zookeeper-server-start.sh config/zookeeper.properties
步驟3:修改配置文件config/server.properties,添加如下內容
host.name=localhost
# Hostname the broker will advertise to producers and consumers. If not set, it uses the
# value for "host.name" if configured. Otherwise, it will use the value returned from
# java.net.InetAddress.getCanonicalHostName().
advertised.host.name=localhost
步驟4:啟動Kafka server
bin/kafka-server-start.sh config/server.properties
步驟5:創建topic
bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic test
檢驗topic創建是否成功
bin/kafka-topics.sh --list --zookeeper localhost:2181
如果正常返回test
步驟6:打開producer,發送消息
bin/kafka-console-producer.sh --broker-list localhost:9092 --topic test
##啟動成功后,輸入以下內容測試
This is a message
This is another message
步驟7:打開consumer,接收消息
bin/kafka-console-consumer.sh --zookeeper localhost:2181 --topic test --from-beginning
###啟動成功后,如果一切正常將會顯示producer端輸入的內容
This is a message
This is another message
運行KafkaWordCount
KafkaWordCount源文件位置 examples/src/main/scala/org/apache/spark/examples/streaming/KafkaWordCount.scala
盡管里面有使用說明,見下文,但如果不是事先對Kafka有一定的了解的話,決然不知道這些參數是什么意思,也不知道該如何填寫。
/**
* Consumes messages from one or more topics in Kafka and does wordcount.
* Usage: KafkaWordCount
* is a list of one or more zookeeper servers that make quorum
* is the name of kafka consumer group
* is a list of one or more kafka topics to consume from
* is the number of threads the kafka consumer should use
*
* Example:
* `$ bin/run-example \
* org.apache.spark.examples.streaming.KafkaWordCount zoo01,zoo02,zoo03 \
* my-consumer-group topic1,topic2 1`
*/
object KafkaWordCount {
def main(args: Array[String]) {
if (args.length < 4) {
System.err.println("Usage: KafkaWordCount ")
System.exit(1)
}
StreamingExamples.setStreamingLogLevels()
val Array(zkQuorum, group, topics, numThreads) = args
val sparkConf = new SparkConf().setAppName("KafkaWordCount")
val ssc = new StreamingContext(sparkConf, Seconds(2))
ssc.checkpoint("checkpoint")
val topicpMap = topics.split(",").map((_,numThreads.toInt)).toMap
val lines = KafkaUtils.createStream(ssc, zkQuorum, group, topicpMap).map(_._2)
val words = lines.flatMap(_.split(" "))
val wordCounts = words.map(x => (x, 1L))
.reduceByKeyAndWindow(_ + _, _ - _, Minutes(10), Seconds(2), 2)
wordCounts.print()
ssc.start()
ssc.awaitTermination()
}
}
講清楚了寫這篇博客的主要原因之后,來看一看該如何運行KafkaWordCount
步驟1:停止運行剛才的kafka-console-producer和kafka-console-consumer
步驟2:運行KafkaWordCountProducer
bin/run-example org.apache.spark.examples.streaming.KafkaWordCountProducer localhost:9092 test 3 5
解釋一下參數的意思,localhost:9092表示producer的地址和端口, test表示topic,3表示每秒發多少條消息,5表示每條消息中有幾個單詞
步驟3:運行KafkaWordCount
bin/run-example org.apache.spark.examples.streaming.KafkaWordCount localhost:2181 test-consumer-group test 1
解釋一下參數, localhost:2181表示zookeeper的監聽地址,test-consumer-group表示consumer-group的名稱,必須和$KAFKA_HOME/config/consumer.properties中的group.id的配置內容一致,test表示topic,1表示線程數。