【LeetCode】114. Distinct Subsequences


Distinct Subsequences

Given a string S and a string T, count the number of distinct subsequences of T in S.

A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ACE" is a subsequence of "ABCDE" while "AEC" is not).

Here is an example:
S = "rabbbit"T = "rabbit"

Return 3.

 

DP,化歸為二維地圖的走法問題。

 

       r  a  b  b   i   t

   1  0  0  0  0  0  0

r  1 

a  1

b  1

b  1

b  1

i   1

t  1

設矩陣transArray,其中元素transArray[i][j]為S[0,...,i]到T[0,...,j]有多少種轉換方式。

問題就轉為從左上角只能走對角(匹配)或者往下(刪除字符),到右下角一共有多少種走法。

transArray[i][0]初始化為1的含義是:任何長度的S,如果轉換為空串,那就只有刪除全部字符這1種方式。

當S[i-1]==T[j-1],說明可以從transArray[i-1][j-1]走對角到達transArray[i][j](S[i-1]匹配T[j-1]),此外還可以從transArray[i-1][j]往下到達transArray[i][j](刪除S[i-1])

當S[i-1]!=T[j-1],說明只能從transArray[i-1][j]往下到達transArray[i][j](刪除S[i-1])

class Solution {
public:
    int numDistinct(string S, string T) {
        int m = S.size();
        int n = T.size();
        
        vector<vector<int> > path(m+1, vector<int>(n+1, 0));
        for(int i = 0; i < m+1; i ++)
            path[i][0] = 1;
        
        for(int i = 1; i < m+1; i ++)
        {
            for(int j = 1; j < n+1; j ++)
            {
                if(S[i-1] == T[j-1])
                    path[i][j] = path[i-1][j-1] + path[i-1][j];
                else
                    path[i][j] = path[i-1][j];
            }
        }
        
        return path[m][n];
    }
};


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM