Apache Spark源碼走讀之17 -- 如何進行代碼跟讀


歡迎轉載,轉載請注明出處,徽滬一郎

概要

今天不談Spark中什么復雜的技術實現,只稍為聊聊如何進行代碼跟讀。眾所周知,Spark使用scala進行開發,由於scala有眾多的語法糖,很多時候代碼跟着跟着就覺着線索跟丟掉了,另外Spark基於Akka來進行消息交互,那如何知道誰是接收方呢?

new Throwable().printStackTrace

代碼跟讀的時候,經常會借助於日志,針對日志中輸出的每一句,我們都很想知道它們的調用者是誰。但有時苦於對spark系統的了解程度不深,或者對scala認識不夠,一時半會之內無法找到答案,那么有沒有什么簡便的辦法呢?

我的辦法就是在日志出現的地方加入下面一句話

new Throwable().printStackTrace()

現在舉一個實際的例子來說明問題。

比如我們在啟動spark-shell之后,輸入一句非常簡單的sc.textFile("README.md"),會輸出下述的log

14/07/05 19:53:27 INFO MemoryStore: ensureFreeSpace(32816) called with curMem=0, maxMem=308910489
14/07/05 19:53:27 INFO MemoryStore: Block broadcast_0 stored as values in memory (estimated size 32.0 KB, free 294.6 MB)
14/07/05 19:53:27 DEBUG BlockManager: Put block broadcast_0 locally took  78 ms
14/07/05 19:53:27 DEBUG BlockManager: Putting block broadcast_0 without replication took  79 ms
res0: org.apache.spark.rdd.RDD[String] = README.md MappedRDD[1] at textFile at :13

那我很想知道是第二句日志所在的tryToPut函數是被誰調用的該怎么辦?

辦法就是打開MemoryStore.scala,找到下述語句

logInfo("Block %s stored as %s in memory (estimated size %s, free %s)".format(
          blockId, valuesOrBytes, Utils.bytesToString(size), Utils.bytesToString(freeMemory)))

在這句話之上,添加如下語句

new Throwable().printStackTrace()

 然后,重新進行源碼編譯

sbt/sbt assembly

再次打開spark-shell,執行sc.textFile("README.md"),就可以得到如下輸出,從中可以清楚知道tryToPut的調用者是誰

14/07/05 19:53:27 INFO MemoryStore: ensureFreeSpace(32816) called with curMem=0, maxMem=308910489
14/07/05 19:53:27 WARN MemoryStore: just show the calltrace by entering some modified code
java.lang.Throwable
	at org.apache.spark.storage.MemoryStore.tryToPut(MemoryStore.scala:182)
	at org.apache.spark.storage.MemoryStore.putValues(MemoryStore.scala:76)
	at org.apache.spark.storage.MemoryStore.putValues(MemoryStore.scala:92)
	at org.apache.spark.storage.BlockManager.doPut(BlockManager.scala:699)
	at org.apache.spark.storage.BlockManager.put(BlockManager.scala:570)
	at org.apache.spark.storage.BlockManager.putSingle(BlockManager.scala:821)
	at org.apache.spark.broadcast.HttpBroadcast.(HttpBroadcast.scala:52)
	at org.apache.spark.broadcast.HttpBroadcastFactory.newBroadcast(HttpBroadcastFactory.scala:35)
	at org.apache.spark.broadcast.HttpBroadcastFactory.newBroadcast(HttpBroadcastFactory.scala:29)
	at org.apache.spark.broadcast.BroadcastManager.newBroadcast(BroadcastManager.scala:62)
	at org.apache.spark.SparkContext.broadcast(SparkContext.scala:787)
	at org.apache.spark.SparkContext.hadoopFile(SparkContext.scala:556)
	at org.apache.spark.SparkContext.textFile(SparkContext.scala:468)
	at $line5.$read$$iwC$$iwC$$iwC$$iwC.(:13)
	at $line5.$read$$iwC$$iwC$$iwC.(:18)
	at $line5.$read$$iwC$$iwC.(:20)
	at $line5.$read$$iwC.(:22)
	at $line5.$read.(:24)
	at $line5.$read$.(:28)
	at $line5.$read$.()
	at $line5.$eval$.(:7)
	at $line5.$eval$.()
	at $line5.$eval.$print()
	at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
	at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
	at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
	at java.lang.reflect.Method.invoke(Method.java:483)
	at org.apache.spark.repl.SparkIMain$ReadEvalPrint.call(SparkIMain.scala:788)
	at org.apache.spark.repl.SparkIMain$Request.loadAndRun(SparkIMain.scala:1056)
	at org.apache.spark.repl.SparkIMain.loadAndRunReq$1(SparkIMain.scala:614)
	at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:645)
	at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:609)
	at org.apache.spark.repl.SparkILoop.reallyInterpret$1(SparkILoop.scala:796)
	at org.apache.spark.repl.SparkILoop.interpretStartingWith(SparkILoop.scala:841)
	at org.apache.spark.repl.SparkILoop.command(SparkILoop.scala:753)
	at org.apache.spark.repl.SparkILoop.processLine$1(SparkILoop.scala:601)
	at org.apache.spark.repl.SparkILoop.innerLoop$1(SparkILoop.scala:608)
	at org.apache.spark.repl.SparkILoop.loop(SparkILoop.scala:611)
	at org.apache.spark.repl.SparkILoop$$anonfun$process$1.apply$mcZ$sp(SparkILoop.scala:936)
	at org.apache.spark.repl.SparkILoop$$anonfun$process$1.apply(SparkILoop.scala:884)
	at org.apache.spark.repl.SparkILoop$$anonfun$process$1.apply(SparkILoop.scala:884)
	at scala.tools.nsc.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:135)
	at org.apache.spark.repl.SparkILoop.process(SparkILoop.scala:884)
	at org.apache.spark.repl.SparkILoop.process(SparkILoop.scala:982)
	at org.apache.spark.repl.Main$.main(Main.scala:31)
	at org.apache.spark.repl.Main.main(Main.scala)
	at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
	at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
	at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
	at java.lang.reflect.Method.invoke(Method.java:483)
	at org.apache.spark.deploy.SparkSubmit$.launch(SparkSubmit.scala:303)
	at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:55)
	at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
14/07/05 19:53:27 INFO MemoryStore: Block broadcast_0 stored as values in memory (estimated size 32.0 KB, free 294.6 MB)
14/07/05 19:53:27 DEBUG BlockManager: Put block broadcast_0 locally took  78 ms
14/07/05 19:53:27 DEBUG BlockManager: Putting block broadcast_0 without replication took  79 ms
res0: org.apache.spark.rdd.RDD[String] = README.md MappedRDD[1] at textFile at :13

git同步

對代碼作了修改之后,如果並不想提交代碼,那該如何將最新的內容同步到本地呢?

git reset --hard
git pull origin master

 Akka消息跟蹤

追蹤消息的接收者是誰,相對來說比較容易,只要使用好grep就可以了,當然前提是要對actor model有一點點了解。

還是舉個實例吧,我們知道CoarseGrainedSchedulerBackend會發送LaunchTask消息出來,那么誰是接收方呢?只需要執行以下腳本即可。

grep LaunchTask -r core/src/main

 從如下的輸出中,可以清楚看出CoarseGrainedExecutorBackend是LaunchTask的接收方,接收到該函數之后的業務處理,只需要去看看接收方的receive函數即可。

core/src/main/scala/org/apache/spark/executor/CoarseGrainedExecutorBackend.scala:    case LaunchTask(data) =>
core/src/main/scala/org/apache/spark/executor/CoarseGrainedExecutorBackend.scala:        logError("Received LaunchTask command but executor was null")
core/src/main/scala/org/apache/spark/scheduler/cluster/CoarseGrainedClusterMessage.scala:  case class LaunchTask(data: SerializableBuffer) extends CoarseGrainedClusterMessage
core/src/main/scala/org/apache/spark/scheduler/cluster/CoarseGrainedSchedulerBackend.scala:          executorActor(task.executorId) ! LaunchTask(new SerializableBuffer(serializedTask))

 小結

今天的內容相對簡單,沒有技術含量,自己做個記述,免得時間久了,不記得。

 

 

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM