實驗名稱: k-meas非監督聚類分析
一、實驗目的和要求
目的:
-
加深對非監督學習的理解和認識
-
掌握聚類方法K-Means算法的設計方法
要求:
根據聚類數據,采用k-Means聚類方法畫出聚類中心
二、實驗環境、內容和方法
環境:windows 7,python2.6 ,Eclipse,Pydev
內容:
1) 非監督學習的理論基礎
2) 動態聚類分析的思想和理論依據
3) 聚類算法的評價指標
三、實驗基本原理
K-means算法是很典型的基於距離的聚類算法,采用距離作為相似性的評價指標,即認為兩個對象的距離越近,其相似度就越大。該算法認為簇是由距離靠近的對象組成的,因此把得到緊湊且獨立的簇作為最終目標。
我們以一個二維的例子來說明下聚類的目的。如下圖左所示,假設我們的n個樣本點分布在圖中所示的二維空間。從數據點的大致形狀可以看出它們大致聚為三個cluster,其中兩個緊湊一些,剩下那個松散一些。我們的目的是為這些數據分組,以便能區分出屬於不同的簇的數據,如果按照分組給它們標上不同的顏色,就是像下圖右邊的圖那樣:
如果人可以看到像上圖那樣的數據分布,就可以輕松進行聚類。但我們怎么教會計算機按照我們的思維去做同樣的事情呢?這里就可以使用k-means算法。
算法過程如下:
1)從N個文檔隨機選取K個文檔作為質心
2)對剩余的每個文檔測量其到每個質心的距離,並把它歸到最近的質心的類
3)重新計算已經得到的各個類的質心
4)迭代2~3步直至新的質心與原質心相等或小於指定閾值,算法結束
具體如下:
輸入:k, data[n];
(1) 選擇k個初始中心點,例如c[0]=data[0],…c[k-1]=data[k-1];
(2) 對於data[0]….data[n],分別與c[0]…c[k-1]比較,假定與c[i]差值最少,就標記為i;
(3) 對於所有標記為i點,重新計算c[i]={ 所有標記為i的data[j]之和}/標記為i的個數;
(4) 重復(2)(3),直到所有c[i]值的變化小於給定閾值。
k-means算法是一種很常見的聚類算法,它的基本思想是:通過迭代尋找k個聚類的一種划分方案,使得用這k個聚類的均值來代表相應各類樣本時所得的總體誤差最小。
k-means算法的基礎是最小誤差平方和准則。其代價函數是:
式中,μc(i)表示第i個聚類的均值。我們希望代價函數最小,直觀的來說,各類內的樣本越相似,其與該類均值間的誤差平方越小,對所有類所得到的誤差平方求和,即可驗證分為k類時,各聚類是否是最優的。
上式的代價函數無法用解析的方法最小化,只能有迭代的方法。k-means算法是將樣本聚類成 k個簇(cluster),其中k是用戶給定的,其求解過程非常直觀簡單,具體算法描述如下:
1、隨機選取 k個聚類質心點
2、重復下面過程直到收斂 {
對於每一個樣例 i,計算其應該屬於的類:
對於每一個類 j,重新計算該類的質心:
}
下圖展示了對n個樣本點進行K-means聚類的效果,這里k取2。
其偽代碼如下:
********************************************************************
創建k個點作為初始的質心點(隨機選擇)
當任意一個點的簇分配結果發生改變時
對數據集中的每一個數據點
對每一個質心
計算質心與數據點的距離
將數據點分配到距離最近的簇
對每一個簇,計算簇中所有點的均值,並將均值作為質心
********************************************************************
四、實驗過程描述
k-means算法比較簡單,但也有幾個比較大的缺點:
(1)k值的選擇是用戶指定的,不同的k得到的結果會有挺大的不同,如下圖所示,左邊是k=3的結果,這個就太稀疏了,藍色的那個簇其實是可以再划分成兩個簇的。而右圖是k=5的結果,可以看到紅色菱形和藍色菱形這兩個簇應該是可以合並成一個簇的:
(2)對k個初始質心的選擇比較敏感,容易陷入局部最小值。例如,我們上面的算法運行的時候,有可能會得到不同的結果,如下面這兩種情況。K-means也是收斂了,只是收斂到了局部最小值:
(3)存在局限性,如下面這種非球狀的數據分布就搞不定了:
(4)數據庫比較大的時候,收斂會比較慢。
k-means老早就出現在江湖了。所以以上的這些不足也被世人的目光敏銳的捕捉到,並融入世人的智慧進行了某種程度上的改良。例如問題(1)對k的選擇可以先用一些算法分析數據的分布,如重心和密度等,然后選擇合適的k。而對問題(2),有人提出了另一個成為二分k均值(bisecting k-means)算法,它對初始的k個質心的選擇就不太敏感。
五、實驗結果
六、附錄代碼
:
Kmeans.py:
from numpy import *
import time
import matplotlib.pyplot as plt
# calculate Euclidean distance
def euclDistance(vector1, vector2):
return sqrt(sum(power(vector2 - vector1, 2)))
# init centroids with random samples
def initCentroids(dataSet, k):
numSamples, dim = dataSet.shape
centroids = zeros((k, dim))
for i in range(k):
index = int(random.uniform(0, numSamples))
centroids[i, :] = dataSet[index, :]
return centroids
# k-means cluster
def kmeans(dataSet, k):
numSamples = dataSet.shape[0]
# first column stores which cluster this sample belongs to,
# second column stores the error between this sample and its centroid
clusterAssment = mat(zeros((numSamples, 2)))
clusterChanged = True
## step 1: init centroids
centroids = initCentroids(dataSet, k)
while clusterChanged:
clusterChanged = False
## for each sample
for i in xrange(numSamples):
minDist = 100000.0
minIndex = 0
## for each centroid
## step 2: find the centroid who is closest
for j in range(k):
distance = euclDistance(centroids[j, :], dataSet[i, :])
if distance < minDist:
minDist = distance
minIndex = j
## step 3: update its cluster
if clusterAssment[i, 0] != minIndex:
clusterChanged = True
clusterAssment[i, :] = minIndex, minDist**2
## step 4: update centroids
for j in range(k):
pointsInCluster = dataSet[nonzero(clusterAssment[:, 0].A == j)[0]]
centroids[j, :] = mean(pointsInCluster, axis = 0)
print 'Congratulations, cluster complete!'
return centroids, clusterAssment
# show your cluster only available with 2-D data
def showCluster(dataSet, k, centroids, clusterAssment):
numSamples, dim = dataSet.shape
if dim != 2:
print "Sorry! I can not draw because the dimension of your data is not 2!"
return 1
mark = ['or', 'ob', 'og', 'ok', '^r', '+r', 'sr', 'dr', '<r', 'pr']
if k > len(mark):
print "Sorry! Your k is too large! please contact Zouxy"
return 1
# draw all samples
for i in xrange(numSamples):
markIndex = int(clusterAssment[i, 0])
plt.plot(dataSet[i, 0], dataSet[i, 1], mark[markIndex])
mark = ['Dr', 'Db', 'Dg', 'Dk', '^b', '+b', 'sb', 'db', '<b', 'pb']
# draw the centroids
for i in range(k):
plt.plot(centroids[i, 0], centroids[i, 1], mark[i], markersize = 12)
plt.show()
Test_kmeans.py:
from numpy import *
import time
import matplotlib.pyplot as plt
import kmeans
from kmeans import kmeans,showCluster
## step 1: load data
print "step 1: load data..."
dataSet = []
fileIn = open('F:\code\python\k-means-2014-5-8/testSet.txt')
for line in fileIn.readlines():
lineArr = line.strip().split('\t')
dataSet.append([float(lineArr[0]), float(lineArr[1])])
## step 2: clustering...
print "step 2: clustering..."
dataSet = mat(dataSet)
k = 4
centroids, clusterAssment = kmeans(dataSet, k)
## step 3: show the result
print "step 3: show the result..."
showCluster(dataSet, k, centroids, clusterAssment)
數據點:testSet.txt
1.658985 4.285136
-3.453687 3.424321
4.838138 -1.151539
-5.379713 -3.362104
0.972564 2.924086
-3.567919 1.531611
0.450614 -3.302219
-3.487105 -1.724432
2.668759 1.594842
-3.156485 3.191137
3.165506 -3.999838
-2.786837 -3.099354
4.208187 2.984927
-2.123337 2.943366
0.704199 -0.479481
-0.392370 -3.963704
2.831667 1.574018
-0.790153 3.343144
2.943496 -3.357075
-3.195883 -2.283926
2.336445 2.875106
-1.786345 2.554248
2.190101 -1.906020
-3.403367 -2.778288
1.778124 3.880832
-1.688346 2.230267
2.592976 -2.054368
-4.007257 -3.207066
2.257734 3.387564
-2.679011 0.785119
0.939512 -4.023563
-3.674424 -2.261084
2.046259 2.735279
-3.189470 1.780269
4.372646 -0.822248
-2.579316 -3.497576
1.889034 5.190400
-0.798747 2.185588
2.836520 -2.658556
-3.837877 -3.253815
2.096701 3.886007
-2.709034 2.923887
3.367037 -3.184789
-2.121479 -4.232586
2.329546 3.179764
-3.284816 3.273099
3.091414 -3.815232
-3.762093 -2.432191
3.542056 2.778832
-1.736822 4.241041
2.127073 -2.983680
-4.323818 -3.938116
3.792121 5.135768
-4.786473 3.358547
2.624081 -3.260715
-4.009299 -2.978115
2.493525 1.963710
-2.513661 2.642162
1.864375 -3.176309
-3.171184 -3.572452
2.894220 2.489128
-2.562539 2.884438
3.491078 -3.947487
-2.565729 -2.012114
3.332948 3.983102
-1.616805 3.573188
2.280615 -2.559444
-2.651229 -3.103198
2.321395 3.154987
-1.685703 2.939697
3.031012 -3.620252
-4.599622 -2.185829
4.196223 1.126677
-2.133863 3.093686
4.668892 -2.562705
-2.793241 -2.149706
2.884105 3.043438
-2.967647 2.848696
4.479332 -1.764772
-4.905566 -2.911070