一致性hash和虛擬節點


 consistent hashing 算法的原理

consistent hashing 是一種 hash 算法,簡單的說,在移除 / 添加一個 cache 時,它能夠盡可能小的改變已存在key 映射關系,盡可能的滿足單調性的要求。

下面就來按照 5 個步驟簡單講講 consistent hashing 算法的基本原理。

1 環形hash 空間

考慮通常的 hash 算法都是將 value 映射到一個 32 為的 key 值,也即是 0~2^32-1 次方的數值空間;我們可以將這個空間想象成一個首( 0 )尾( 2^32-1 )相接的圓環,如下面圖 1 所示的那樣。

 

圖 1 環形 hash 空間

2 把對象映射到hash 空間

接下來考慮 4 個對象 object1~object4 ,通過 hash 函數計算出的 hash 值 key 在環上的分布如圖 2 所示。

hash(object1) = key1;

… …

hash(object4) = key4;

 

圖 2 4 個對象的 key 值分布

3 把cache 映射到hash 空間

Consistent hashing 的基本思想就是將對象和 cache 都映射到同一個 hash 數值空間中,並且使用相同的 hash算法。

假設當前有 A,B 和 C 共 3 台 cache ,那么其映射結果將如圖 3 所示,他們在 hash 空間中,以對應的 hash 值排列。

hash(cache A) = key A;

… …

hash(cache C) = key C;

 

圖 3 cache 和對象的 key 值分布

 

說到這里,順便提一下 cache 的 hash 計算,一般的方法可以使用 cache 機器的 IP 地址或者機器名作為 hash輸入。

4 把對象映射到cache

現在 cache 和對象都已經通過同一個 hash 算法映射到 hash 數值空間中了,接下來要考慮的就是如何將對象映射到 cache 上面了。

在這個環形空間中,如果沿着順時針方向從對象的 key 值出發,直到遇見一個 cache ,那么就將該對象存儲在這個 cache 上,因為對象和 cache 的 hash 值是固定的,因此這個 cache 必然是唯一和確定的。這樣不就找到了對象和 cache 的映射方法了嗎?!

依然繼續上面的例子(參見圖 3 ),那么根據上面的方法,對象 object1 將被存儲到 cache A 上; object2 和object3 對應到 cache C ; object4 對應到 cache B ;

5 考察cache 的變動

前面講過,通過 hash 然后求余的方法帶來的最大問題就在於不能滿足單調性,當 cache 有所變動時, cache會失效,進而對后台服務器造成巨大的沖擊,現在就來分析分析 consistent hashing 算法。

5.1 移除 cache

考慮假設 cache B 掛掉了,根據上面講到的映射方法,這時受影響的將僅是那些沿 cache B 逆時針遍歷直到下一個 cache ( cache C )之間的對象,也即是本來映射到 cache B 上的那些對象。

因此這里僅需要變動對象 object4 ,將其重新映射到 cache C 上即可;參見圖 4 。

 

圖 4 Cache B 被移除后的 cache 映射

5.2 添加 cache

再考慮添加一台新的 cache D 的情況,假設在這個環形 hash 空間中, cache D 被映射在對象 object2 和object3 之間。這時受影響的將僅是那些沿 cache D 逆時針遍歷直到下一個 cache ( cache B )之間的對象(它們是也本來映射到 cache C 上對象的一部分),將這些對象重新映射到 cache D 上即可。

 

因此這里僅需要變動對象 object2 ,將其重新映射到 cache D 上;參見圖 5 。

 

圖 5 添加 cache D 后的映射關系

虛擬節點

考量 Hash 算法的另一個指標是平衡性 (Balance) ,定義如下:

平衡性

  平衡性是指哈希的結果能夠盡可能分布到所有的緩沖中去,這樣可以使得所有的緩沖空間都得到利用。

hash 算法並不是保證絕對的平衡,如果 cache 較少的話,對象並不能被均勻的映射到 cache 上,比如在上面的例子中,僅部署 cache A 和 cache C 的情況下,在 4 個對象中, cache A 僅存儲了 object1 ,而 cache C 則存儲了object2 、 object3 和 object4 ;分布是很不均衡的。

為了解決這種情況, consistent hashing 引入了“虛擬節點”的概念,它可以如下定義:

“虛擬節點”( virtual node )是實際節點在 hash 空間的復制品( replica ),一實際個節點對應了若干個“虛擬節點”,這個對應個數也成為“復制個數”,“虛擬節點”在 hash 空間中以 hash 值排列。

仍以僅部署 cache A 和 cache C 的情況為例,在圖 4 中我們已經看到, cache 分布並不均勻。現在我們引入虛擬節點,並設置“復制個數”為 2 ,這就意味着一共會存在 4 個“虛擬節點”, cache A1, cache A2 代表了 cache A ; cache C1, cache C2 代表了 cache C ;假設一種比較理想的情況,參見圖 6 。

 

圖 6 引入“虛擬節點”后的映射關系

 

此時,對象到“虛擬節點”的映射關系為:

objec1->cache A2 ; objec2->cache A1 ; objec3->cache C1 ; objec4->cache C2 ;

因此對象 object1 和 object2 都被映射到了 cache A 上,而 object3 和 object4 映射到了 cache C 上;平衡性有了很大提高。

引入“虛擬節點”后,映射關系就從 { 對象 -> 節點 } 轉換到了 { 對象 -> 虛擬節點 } 。查詢物體所在 cache 時的映射關系如圖 7 所示。

 

圖 7 查詢對象所在 cache

 

“虛擬節點”的 hash 計算可以采用對應節點的 IP 地址加數字后綴的方式。例如假設 cache A 的 IP 地址為202.168.14.241 。

引入“虛擬節點”前,計算 cache A 的 hash 值:

Hash(“202.168.14.241”);

引入“虛擬節點”后,計算“虛擬節”點 cache A1 和 cache A2 的 hash 值:

Hash(“202.168.14.241#1”);  // cache A1

Hash(“202.168.14.241#2”);  // cache A2


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM