Java多線程系列--“JUC鎖”11之 Semaphore信號量的原理和示例


 

概要

本章,我們對JUC包中的信號量Semaphore進行學習。內容包括:
Semaphore簡介
Semaphore數據結構

Semaphore源碼分析(基於JDK1.7.0_40)
Semaphore示例

轉載請注明出處:http://www.cnblogs.com/skywang12345/p/3534050.html

 

Semaphore簡介

Semaphore是一個計數信號量,它的本質是一個"共享鎖"。

信號量維護了一個信號量許可集。線程可以通過調用acquire()來獲取信號量的許可;當信號量中有可用的許可時,線程能獲取該許可;否則線程必須等待,直到有可用的許可為止。 線程可以通過release()來釋放它所持有的信號量許可。


Semaphore的函數列表

// 創建具有給定的許可數和非公平的公平設置的 Semaphore。
Semaphore(int permits)
// 創建具有給定的許可數和給定的公平設置的 Semaphore。
Semaphore(int permits, boolean fair)

// 從此信號量獲取一個許可,在提供一個許可前一直將線程阻塞,否則線程被中斷。
void acquire()
// 從此信號量獲取給定數目的許可,在提供這些許可前一直將線程阻塞,或者線程已被中斷。
void acquire(int permits)
// 從此信號量中獲取許可,在有可用的許可前將其阻塞。
void acquireUninterruptibly()
// 從此信號量獲取給定數目的許可,在提供這些許可前一直將線程阻塞。
void acquireUninterruptibly(int permits)
// 返回此信號量中當前可用的許可數。
int availablePermits()
// 獲取並返回立即可用的所有許可。
int drainPermits()
// 返回一個 collection,包含可能等待獲取的線程。
protected Collection<Thread> getQueuedThreads()
// 返回正在等待獲取的線程的估計數目。
int getQueueLength()
// 查詢是否有線程正在等待獲取。
boolean hasQueuedThreads()
// 如果此信號量的公平設置為 true,則返回 true。
boolean isFair()
// 根據指定的縮減量減小可用許可的數目。
protected void reducePermits(int reduction)
// 釋放一個許可,將其返回給信號量。
void release()
// 釋放給定數目的許可,將其返回到信號量。
void release(int permits)
// 返回標識此信號量的字符串,以及信號量的狀態。
String toString()
// 僅在調用時此信號量存在一個可用許可,才從信號量獲取許可。
boolean tryAcquire()
// 僅在調用時此信號量中有給定數目的許可時,才從此信號量中獲取這些許可。
boolean tryAcquire(int permits)
// 如果在給定的等待時間內此信號量有可用的所有許可,並且當前線程未被中斷,則從此信號量獲取給定數目的許可。
boolean tryAcquire(int permits, long timeout, TimeUnit unit)
// 如果在給定的等待時間內,此信號量有可用的許可並且當前線程未被中斷,則從此信號量獲取一個許可。
boolean tryAcquire(long timeout, TimeUnit unit)

 

Semaphore數據結構

Semaphore的UML類圖如下:

從圖中可以看出:
(01) 和"ReentrantLock"一樣,Semaphore也包含了sync對象,sync是Sync類型;而且,Sync是一個繼承於AQS的抽象類。
(02) Sync包括兩個子類:"公平信號量"FairSync 和 "非公平信號量"NonfairSync。sync是"FairSync的實例",或者"NonfairSync的實例";默認情況下,sync是NonfairSync(即,默認是非公平信號量)。

 

Semaphore源碼分析(基於JDK1.7.0_40)

Semaphore完整源碼(基於JDK1.7.0_40)

/*
 * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 */

/*
 *
 *
 *
 *
 *
 * Written by Doug Lea with assistance from members of JCP JSR-166
 * Expert Group and released to the public domain, as explained at
 * http://creativecommons.org/publicdomain/zero/1.0/
 */

package java.util.concurrent;
import java.util.*;
import java.util.concurrent.locks.*;
import java.util.concurrent.atomic.*;

/**
 * A counting semaphore.  Conceptually, a semaphore maintains a set of
 * permits.  Each {@link #acquire} blocks if necessary until a permit is
 * available, and then takes it.  Each {@link #release} adds a permit,
 * potentially releasing a blocking acquirer.
 * However, no actual permit objects are used; the {@code Semaphore} just
 * keeps a count of the number available and acts accordingly.
 *
 * <p>Semaphores are often used to restrict the number of threads than can
 * access some (physical or logical) resource. For example, here is
 * a class that uses a semaphore to control access to a pool of items:
 * <pre>
 * class Pool {
 *   private static final int MAX_AVAILABLE = 100;
 *   private final Semaphore available = new Semaphore(MAX_AVAILABLE, true);
 *
 *   public Object getItem() throws InterruptedException {
 *     available.acquire();
 *     return getNextAvailableItem();
 *   }
 *
 *   public void putItem(Object x) {
 *     if (markAsUnused(x))
 *       available.release();
 *   }
 *
 *   // Not a particularly efficient data structure; just for demo
 *
 *   protected Object[] items = ... whatever kinds of items being managed
 *   protected boolean[] used = new boolean[MAX_AVAILABLE];
 *
 *   protected synchronized Object getNextAvailableItem() {
 *     for (int i = 0; i < MAX_AVAILABLE; ++i) {
 *       if (!used[i]) {
 *          used[i] = true;
 *          return items[i];
 *       }
 *     }
 *     return null; // not reached
 *   }
 *
 *   protected synchronized boolean markAsUnused(Object item) {
 *     for (int i = 0; i < MAX_AVAILABLE; ++i) {
 *       if (item == items[i]) {
 *          if (used[i]) {
 *            used[i] = false;
 *            return true;
 *          } else
 *            return false;
 *       }
 *     }
 *     return false;
 *   }
 *
 * }
 * </pre>
 *
 * <p>Before obtaining an item each thread must acquire a permit from
 * the semaphore, guaranteeing that an item is available for use. When
 * the thread has finished with the item it is returned back to the
 * pool and a permit is returned to the semaphore, allowing another
 * thread to acquire that item.  Note that no synchronization lock is
 * held when {@link #acquire} is called as that would prevent an item
 * from being returned to the pool.  The semaphore encapsulates the
 * synchronization needed to restrict access to the pool, separately
 * from any synchronization needed to maintain the consistency of the
 * pool itself.
 *
 * <p>A semaphore initialized to one, and which is used such that it
 * only has at most one permit available, can serve as a mutual
 * exclusion lock.  This is more commonly known as a <em>binary
 * semaphore</em>, because it only has two states: one permit
 * available, or zero permits available.  When used in this way, the
 * binary semaphore has the property (unlike many {@link Lock}
 * implementations), that the &quot;lock&quot; can be released by a
 * thread other than the owner (as semaphores have no notion of
 * ownership).  This can be useful in some specialized contexts, such
 * as deadlock recovery.
 *
 * <p> The constructor for this class optionally accepts a
 * <em>fairness</em> parameter. When set false, this class makes no
 * guarantees about the order in which threads acquire permits. In
 * particular, <em>barging</em> is permitted, that is, a thread
 * invoking {@link #acquire} can be allocated a permit ahead of a
 * thread that has been waiting - logically the new thread places itself at
 * the head of the queue of waiting threads. When fairness is set true, the
 * semaphore guarantees that threads invoking any of the {@link
 * #acquire() acquire} methods are selected to obtain permits in the order in
 * which their invocation of those methods was processed
 * (first-in-first-out; FIFO). Note that FIFO ordering necessarily
 * applies to specific internal points of execution within these
 * methods.  So, it is possible for one thread to invoke
 * {@code acquire} before another, but reach the ordering point after
 * the other, and similarly upon return from the method.
 * Also note that the untimed {@link #tryAcquire() tryAcquire} methods do not
 * honor the fairness setting, but will take any permits that are
 * available.
 *
 * <p>Generally, semaphores used to control resource access should be
 * initialized as fair, to ensure that no thread is starved out from
 * accessing a resource. When using semaphores for other kinds of
 * synchronization control, the throughput advantages of non-fair
 * ordering often outweigh fairness considerations.
 *
 * <p>This class also provides convenience methods to {@link
 * #acquire(int) acquire} and {@link #release(int) release} multiple
 * permits at a time.  Beware of the increased risk of indefinite
 * postponement when these methods are used without fairness set true.
 *
 * <p>Memory consistency effects: Actions in a thread prior to calling
 * a "release" method such as {@code release()}
 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
 * actions following a successful "acquire" method such as {@code acquire()}
 * in another thread.
 *
 * @since 1.5
 * @author Doug Lea
 *
 */

public class Semaphore implements java.io.Serializable {
    private static final long serialVersionUID = -3222578661600680210L;
    /** All mechanics via AbstractQueuedSynchronizer subclass */
    private final Sync sync;

    /**
     * Synchronization implementation for semaphore.  Uses AQS state
     * to represent permits. Subclassed into fair and nonfair
     * versions.
     */
    abstract static class Sync extends AbstractQueuedSynchronizer {
        private static final long serialVersionUID = 1192457210091910933L;

        Sync(int permits) {
            setState(permits);
        }

        final int getPermits() {
            return getState();
        }

        final int nonfairTryAcquireShared(int acquires) {
            for (;;) {
                int available = getState();
                int remaining = available - acquires;
                if (remaining < 0 ||
                    compareAndSetState(available, remaining))
                    return remaining;
            }
        }

        protected final boolean tryReleaseShared(int releases) {
            for (;;) {
                int current = getState();
                int next = current + releases;
                if (next < current) // overflow
                    throw new Error("Maximum permit count exceeded");
                if (compareAndSetState(current, next))
                    return true;
            }
        }

        final void reducePermits(int reductions) {
            for (;;) {
                int current = getState();
                int next = current - reductions;
                if (next > current) // underflow
                    throw new Error("Permit count underflow");
                if (compareAndSetState(current, next))
                    return;
            }
        }

        final int drainPermits() {
            for (;;) {
                int current = getState();
                if (current == 0 || compareAndSetState(current, 0))
                    return current;
            }
        }
    }

    /**
     * NonFair version
     */
    static final class NonfairSync extends Sync {
        private static final long serialVersionUID = -2694183684443567898L;

        NonfairSync(int permits) {
            super(permits);
        }

        protected int tryAcquireShared(int acquires) {
            return nonfairTryAcquireShared(acquires);
        }
    }

    /**
     * Fair version
     */
    static final class FairSync extends Sync {
        private static final long serialVersionUID = 2014338818796000944L;

        FairSync(int permits) {
            super(permits);
        }

        protected int tryAcquireShared(int acquires) {
            for (;;) {
                if (hasQueuedPredecessors())
                    return -1;
                int available = getState();
                int remaining = available - acquires;
                if (remaining < 0 ||
                    compareAndSetState(available, remaining))
                    return remaining;
            }
        }
    }

    /**
     * Creates a {@code Semaphore} with the given number of
     * permits and nonfair fairness setting.
     *
     * @param permits the initial number of permits available.
     *        This value may be negative, in which case releases
     *        must occur before any acquires will be granted.
     */
    public Semaphore(int permits) {
        sync = new NonfairSync(permits);
    }

    /**
     * Creates a {@code Semaphore} with the given number of
     * permits and the given fairness setting.
     *
     * @param permits the initial number of permits available.
     *        This value may be negative, in which case releases
     *        must occur before any acquires will be granted.
     * @param fair {@code true} if this semaphore will guarantee
     *        first-in first-out granting of permits under contention,
     *        else {@code false}
     */
    public Semaphore(int permits, boolean fair) {
        sync = fair ? new FairSync(permits) : new NonfairSync(permits);
    }

    /**
     * Acquires a permit from this semaphore, blocking until one is
     * available, or the thread is {@linkplain Thread#interrupt interrupted}.
     *
     * <p>Acquires a permit, if one is available and returns immediately,
     * reducing the number of available permits by one.
     *
     * <p>If no permit is available then the current thread becomes
     * disabled for thread scheduling purposes and lies dormant until
     * one of two things happens:
     * <ul>
     * <li>Some other thread invokes the {@link #release} method for this
     * semaphore and the current thread is next to be assigned a permit; or
     * <li>Some other thread {@linkplain Thread#interrupt interrupts}
     * the current thread.
     * </ul>
     *
     * <p>If the current thread:
     * <ul>
     * <li>has its interrupted status set on entry to this method; or
     * <li>is {@linkplain Thread#interrupt interrupted} while waiting
     * for a permit,
     * </ul>
     * then {@link InterruptedException} is thrown and the current thread's
     * interrupted status is cleared.
     *
     * @throws InterruptedException if the current thread is interrupted
     */
    public void acquire() throws InterruptedException {
        sync.acquireSharedInterruptibly(1);
    }

    /**
     * Acquires a permit from this semaphore, blocking until one is
     * available.
     *
     * <p>Acquires a permit, if one is available and returns immediately,
     * reducing the number of available permits by one.
     *
     * <p>If no permit is available then the current thread becomes
     * disabled for thread scheduling purposes and lies dormant until
     * some other thread invokes the {@link #release} method for this
     * semaphore and the current thread is next to be assigned a permit.
     *
     * <p>If the current thread is {@linkplain Thread#interrupt interrupted}
     * while waiting for a permit then it will continue to wait, but the
     * time at which the thread is assigned a permit may change compared to
     * the time it would have received the permit had no interruption
     * occurred.  When the thread does return from this method its interrupt
     * status will be set.
     */
    public void acquireUninterruptibly() {
        sync.acquireShared(1);
    }

    /**
     * Acquires a permit from this semaphore, only if one is available at the
     * time of invocation.
     *
     * <p>Acquires a permit, if one is available and returns immediately,
     * with the value {@code true},
     * reducing the number of available permits by one.
     *
     * <p>If no permit is available then this method will return
     * immediately with the value {@code false}.
     *
     * <p>Even when this semaphore has been set to use a
     * fair ordering policy, a call to {@code tryAcquire()} <em>will</em>
     * immediately acquire a permit if one is available, whether or not
     * other threads are currently waiting.
     * This &quot;barging&quot; behavior can be useful in certain
     * circumstances, even though it breaks fairness. If you want to honor
     * the fairness setting, then use
     * {@link #tryAcquire(long, TimeUnit) tryAcquire(0, TimeUnit.SECONDS) }
     * which is almost equivalent (it also detects interruption).
     *
     * @return {@code true} if a permit was acquired and {@code false}
     *         otherwise
     */
    public boolean tryAcquire() {
        return sync.nonfairTryAcquireShared(1) >= 0;
    }

    /**
     * Acquires a permit from this semaphore, if one becomes available
     * within the given waiting time and the current thread has not
     * been {@linkplain Thread#interrupt interrupted}.
     *
     * <p>Acquires a permit, if one is available and returns immediately,
     * with the value {@code true},
     * reducing the number of available permits by one.
     *
     * <p>If no permit is available then the current thread becomes
     * disabled for thread scheduling purposes and lies dormant until
     * one of three things happens:
     * <ul>
     * <li>Some other thread invokes the {@link #release} method for this
     * semaphore and the current thread is next to be assigned a permit; or
     * <li>Some other thread {@linkplain Thread#interrupt interrupts}
     * the current thread; or
     * <li>The specified waiting time elapses.
     * </ul>
     *
     * <p>If a permit is acquired then the value {@code true} is returned.
     *
     * <p>If the current thread:
     * <ul>
     * <li>has its interrupted status set on entry to this method; or
     * <li>is {@linkplain Thread#interrupt interrupted} while waiting
     * to acquire a permit,
     * </ul>
     * then {@link InterruptedException} is thrown and the current thread's
     * interrupted status is cleared.
     *
     * <p>If the specified waiting time elapses then the value {@code false}
     * is returned.  If the time is less than or equal to zero, the method
     * will not wait at all.
     *
     * @param timeout the maximum time to wait for a permit
     * @param unit the time unit of the {@code timeout} argument
     * @return {@code true} if a permit was acquired and {@code false}
     *         if the waiting time elapsed before a permit was acquired
     * @throws InterruptedException if the current thread is interrupted
     */
    public boolean tryAcquire(long timeout, TimeUnit unit)
        throws InterruptedException {
        return sync.tryAcquireSharedNanos(1, unit.toNanos(timeout));
    }

    /**
     * Releases a permit, returning it to the semaphore.
     *
     * <p>Releases a permit, increasing the number of available permits by
     * one.  If any threads are trying to acquire a permit, then one is
     * selected and given the permit that was just released.  That thread
     * is (re)enabled for thread scheduling purposes.
     *
     * <p>There is no requirement that a thread that releases a permit must
     * have acquired that permit by calling {@link #acquire}.
     * Correct usage of a semaphore is established by programming convention
     * in the application.
     */
    public void release() {
        sync.releaseShared(1);
    }

    /**
     * Acquires the given number of permits from this semaphore,
     * blocking until all are available,
     * or the thread is {@linkplain Thread#interrupt interrupted}.
     *
     * <p>Acquires the given number of permits, if they are available,
     * and returns immediately, reducing the number of available permits
     * by the given amount.
     *
     * <p>If insufficient permits are available then the current thread becomes
     * disabled for thread scheduling purposes and lies dormant until
     * one of two things happens:
     * <ul>
     * <li>Some other thread invokes one of the {@link #release() release}
     * methods for this semaphore, the current thread is next to be assigned
     * permits and the number of available permits satisfies this request; or
     * <li>Some other thread {@linkplain Thread#interrupt interrupts}
     * the current thread.
     * </ul>
     *
     * <p>If the current thread:
     * <ul>
     * <li>has its interrupted status set on entry to this method; or
     * <li>is {@linkplain Thread#interrupt interrupted} while waiting
     * for a permit,
     * </ul>
     * then {@link InterruptedException} is thrown and the current thread's
     * interrupted status is cleared.
     * Any permits that were to be assigned to this thread are instead
     * assigned to other threads trying to acquire permits, as if
     * permits had been made available by a call to {@link #release()}.
     *
     * @param permits the number of permits to acquire
     * @throws InterruptedException if the current thread is interrupted
     * @throws IllegalArgumentException if {@code permits} is negative
     */
    public void acquire(int permits) throws InterruptedException {
        if (permits < 0) throw new IllegalArgumentException();
        sync.acquireSharedInterruptibly(permits);
    }

    /**
     * Acquires the given number of permits from this semaphore,
     * blocking until all are available.
     *
     * <p>Acquires the given number of permits, if they are available,
     * and returns immediately, reducing the number of available permits
     * by the given amount.
     *
     * <p>If insufficient permits are available then the current thread becomes
     * disabled for thread scheduling purposes and lies dormant until
     * some other thread invokes one of the {@link #release() release}
     * methods for this semaphore, the current thread is next to be assigned
     * permits and the number of available permits satisfies this request.
     *
     * <p>If the current thread is {@linkplain Thread#interrupt interrupted}
     * while waiting for permits then it will continue to wait and its
     * position in the queue is not affected.  When the thread does return
     * from this method its interrupt status will be set.
     *
     * @param permits the number of permits to acquire
     * @throws IllegalArgumentException if {@code permits} is negative
     *
     */
    public void acquireUninterruptibly(int permits) {
        if (permits < 0) throw new IllegalArgumentException();
        sync.acquireShared(permits);
    }

    /**
     * Acquires the given number of permits from this semaphore, only
     * if all are available at the time of invocation.
     *
     * <p>Acquires the given number of permits, if they are available, and
     * returns immediately, with the value {@code true},
     * reducing the number of available permits by the given amount.
     *
     * <p>If insufficient permits are available then this method will return
     * immediately with the value {@code false} and the number of available
     * permits is unchanged.
     *
     * <p>Even when this semaphore has been set to use a fair ordering
     * policy, a call to {@code tryAcquire} <em>will</em>
     * immediately acquire a permit if one is available, whether or
     * not other threads are currently waiting.  This
     * &quot;barging&quot; behavior can be useful in certain
     * circumstances, even though it breaks fairness. If you want to
     * honor the fairness setting, then use {@link #tryAcquire(int,
     * long, TimeUnit) tryAcquire(permits, 0, TimeUnit.SECONDS) }
     * which is almost equivalent (it also detects interruption).
     *
     * @param permits the number of permits to acquire
     * @return {@code true} if the permits were acquired and
     *         {@code false} otherwise
     * @throws IllegalArgumentException if {@code permits} is negative
     */
    public boolean tryAcquire(int permits) {
        if (permits < 0) throw new IllegalArgumentException();
        return sync.nonfairTryAcquireShared(permits) >= 0;
    }

    /**
     * Acquires the given number of permits from this semaphore, if all
     * become available within the given waiting time and the current
     * thread has not been {@linkplain Thread#interrupt interrupted}.
     *
     * <p>Acquires the given number of permits, if they are available and
     * returns immediately, with the value {@code true},
     * reducing the number of available permits by the given amount.
     *
     * <p>If insufficient permits are available then
     * the current thread becomes disabled for thread scheduling
     * purposes and lies dormant until one of three things happens:
     * <ul>
     * <li>Some other thread invokes one of the {@link #release() release}
     * methods for this semaphore, the current thread is next to be assigned
     * permits and the number of available permits satisfies this request; or
     * <li>Some other thread {@linkplain Thread#interrupt interrupts}
     * the current thread; or
     * <li>The specified waiting time elapses.
     * </ul>
     *
     * <p>If the permits are acquired then the value {@code true} is returned.
     *
     * <p>If the current thread:
     * <ul>
     * <li>has its interrupted status set on entry to this method; or
     * <li>is {@linkplain Thread#interrupt interrupted} while waiting
     * to acquire the permits,
     * </ul>
     * then {@link InterruptedException} is thrown and the current thread's
     * interrupted status is cleared.
     * Any permits that were to be assigned to this thread, are instead
     * assigned to other threads trying to acquire permits, as if
     * the permits had been made available by a call to {@link #release()}.
     *
     * <p>If the specified waiting time elapses then the value {@code false}
     * is returned.  If the time is less than or equal to zero, the method
     * will not wait at all.  Any permits that were to be assigned to this
     * thread, are instead assigned to other threads trying to acquire
     * permits, as if the permits had been made available by a call to
     * {@link #release()}.
     *
     * @param permits the number of permits to acquire
     * @param timeout the maximum time to wait for the permits
     * @param unit the time unit of the {@code timeout} argument
     * @return {@code true} if all permits were acquired and {@code false}
     *         if the waiting time elapsed before all permits were acquired
     * @throws InterruptedException if the current thread is interrupted
     * @throws IllegalArgumentException if {@code permits} is negative
     */
    public boolean tryAcquire(int permits, long timeout, TimeUnit unit)
        throws InterruptedException {
        if (permits < 0) throw new IllegalArgumentException();
        return sync.tryAcquireSharedNanos(permits, unit.toNanos(timeout));
    }

    /**
     * Releases the given number of permits, returning them to the semaphore.
     *
     * <p>Releases the given number of permits, increasing the number of
     * available permits by that amount.
     * If any threads are trying to acquire permits, then one
     * is selected and given the permits that were just released.
     * If the number of available permits satisfies that thread's request
     * then that thread is (re)enabled for thread scheduling purposes;
     * otherwise the thread will wait until sufficient permits are available.
     * If there are still permits available
     * after this thread's request has been satisfied, then those permits
     * are assigned in turn to other threads trying to acquire permits.
     *
     * <p>There is no requirement that a thread that releases a permit must
     * have acquired that permit by calling {@link Semaphore#acquire acquire}.
     * Correct usage of a semaphore is established by programming convention
     * in the application.
     *
     * @param permits the number of permits to release
     * @throws IllegalArgumentException if {@code permits} is negative
     */
    public void release(int permits) {
        if (permits < 0) throw new IllegalArgumentException();
        sync.releaseShared(permits);
    }

    /**
     * Returns the current number of permits available in this semaphore.
     *
     * <p>This method is typically used for debugging and testing purposes.
     *
     * @return the number of permits available in this semaphore
     */
    public int availablePermits() {
        return sync.getPermits();
    }

    /**
     * Acquires and returns all permits that are immediately available.
     *
     * @return the number of permits acquired
     */
    public int drainPermits() {
        return sync.drainPermits();
    }

    /**
     * Shrinks the number of available permits by the indicated
     * reduction. This method can be useful in subclasses that use
     * semaphores to track resources that become unavailable. This
     * method differs from {@code acquire} in that it does not block
     * waiting for permits to become available.
     *
     * @param reduction the number of permits to remove
     * @throws IllegalArgumentException if {@code reduction} is negative
     */
    protected void reducePermits(int reduction) {
        if (reduction < 0) throw new IllegalArgumentException();
        sync.reducePermits(reduction);
    }

    /**
     * Returns {@code true} if this semaphore has fairness set true.
     *
     * @return {@code true} if this semaphore has fairness set true
     */
    public boolean isFair() {
        return sync instanceof FairSync;
    }

    /**
     * Queries whether any threads are waiting to acquire. Note that
     * because cancellations may occur at any time, a {@code true}
     * return does not guarantee that any other thread will ever
     * acquire.  This method is designed primarily for use in
     * monitoring of the system state.
     *
     * @return {@code true} if there may be other threads waiting to
     *         acquire the lock
     */
    public final boolean hasQueuedThreads() {
        return sync.hasQueuedThreads();
    }

    /**
     * Returns an estimate of the number of threads waiting to acquire.
     * The value is only an estimate because the number of threads may
     * change dynamically while this method traverses internal data
     * structures.  This method is designed for use in monitoring of the
     * system state, not for synchronization control.
     *
     * @return the estimated number of threads waiting for this lock
     */
    public final int getQueueLength() {
        return sync.getQueueLength();
    }

    /**
     * Returns a collection containing threads that may be waiting to acquire.
     * Because the actual set of threads may change dynamically while
     * constructing this result, the returned collection is only a best-effort
     * estimate.  The elements of the returned collection are in no particular
     * order.  This method is designed to facilitate construction of
     * subclasses that provide more extensive monitoring facilities.
     *
     * @return the collection of threads
     */
    protected Collection<Thread> getQueuedThreads() {
        return sync.getQueuedThreads();
    }

    /**
     * Returns a string identifying this semaphore, as well as its state.
     * The state, in brackets, includes the String {@code "Permits ="}
     * followed by the number of permits.
     *
     * @return a string identifying this semaphore, as well as its state
     */
    public String toString() {
        return super.toString() + "[Permits = " + sync.getPermits() + "]";
    }
}
View Code

Semaphore是通過共享鎖實現的。根據共享鎖的獲取原則,Semaphore分為"公平信號量"和"非公平信號量"。


"公平信號量"和"非公平信號量"的區別

"公平信號量"和"非公平信號量"的釋放信號量的機制是一樣的!不同的是它們獲取信號量的機制線程在嘗試獲取信號量許可時,對於公平信號量而言,如果當前線程不在CLH隊列的頭部,則排隊等候;而對於非公平信號量而言,無論當前線程是不是在CLH隊列的頭部,它都會直接獲取信號量。該差異具體的體現在,它們的tryAcquireShared()函數的實現不同。

"公平信號量"類

static final class FairSync extends Sync {
    private static final long serialVersionUID = 2014338818796000944L;

    FairSync(int permits) {
        super(permits);
    }

    protected int tryAcquireShared(int acquires) {
        for (;;) {
            if (hasQueuedPredecessors())
                return -1;
            int available = getState();
            int remaining = available - acquires;
            if (remaining < 0 ||
                compareAndSetState(available, remaining))
                return remaining;
        }
    }
}
View Code

"非公平信號量"類

static final class NonfairSync extends Sync {
    private static final long serialVersionUID = -2694183684443567898L;

    NonfairSync(int permits) {
        super(permits);
    }

    protected int tryAcquireShared(int acquires) {
        return nonfairTryAcquireShared(acquires);
    }
}
View Code

下面,我們逐步的對它們的源碼進行分析。


1. 信號量構造函數

public Semaphore(int permits) {
    sync = new NonfairSync(permits);
}

public Semaphore(int permits, boolean fair) {
    sync = fair ? new FairSync(permits) : new NonfairSync(permits);
}

從中,我們可以信號量分為“公平信號量(FairSync)”和“非公平信號量(NonfairSync)”。Semaphore(int permits)函數會默認創建“非公平信號量”。


2. 公平信號量獲取和釋放

2.1 公平信號量的獲取
Semaphore中的公平信號量是FairSync。它的獲取API如下:

public void acquire() throws InterruptedException {
    sync.acquireSharedInterruptibly(1);
}

public void acquire(int permits) throws InterruptedException {
    if (permits < 0) throw new IllegalArgumentException();
    sync.acquireSharedInterruptibly(permits);
}

信號量中的acquire()獲取函數,實際上是調用的AQS中的acquireSharedInterruptibly()。

 

acquireSharedInterruptibly()的源碼如下:

public final void acquireSharedInterruptibly(int arg)
        throws InterruptedException {
    // 如果線程是中斷狀態,則拋出異常。
    if (Thread.interrupted())
        throw new InterruptedException();
    // 否則,嘗試獲取“共享鎖”;獲取成功則直接返回,獲取失敗,則通過doAcquireSharedInterruptibly()獲取。
    if (tryAcquireShared(arg) < 0)
        doAcquireSharedInterruptibly(arg);
}

 

Semaphore中”公平鎖“對應的tryAcquireShared()實現如下:

protected int tryAcquireShared(int acquires) {
    for (;;) {
        // 判斷“當前線程”是不是CLH隊列中的第一個線程線程,
        // 若是的話,則返回-1。
        if (hasQueuedPredecessors())
            return -1;
        // 設置“可以獲得的信號量的許可數”
        int available = getState();
        // 設置“獲得acquires個信號量許可之后,剩余的信號量許可數”
        int remaining = available - acquires;
        // 如果“剩余的信號量許可數>=0”,則設置“可以獲得的信號量許可數”為remaining。
        if (remaining < 0 ||
            compareAndSetState(available, remaining))
            return remaining;
    }
}

說明:tryAcquireShared()的作用是嘗試獲取acquires個信號量許可數。
對於Semaphore而言,state表示的是“當前可獲得的信號量許可數”。

 

下面看看AQS中doAcquireSharedInterruptibly()的實現:

private void doAcquireSharedInterruptibly(long arg)
    throws InterruptedException {
    // 創建”當前線程“的Node節點,且Node中記錄的鎖是”共享鎖“類型;並將該節點添加到CLH隊列末尾。
    final Node node = addWaiter(Node.SHARED);
    boolean failed = true;
    try {
        for (;;) {
            // 獲取上一個節點。
            // 如果上一節點是CLH隊列的表頭,則”嘗試獲取共享鎖“。
            final Node p = node.predecessor();
            if (p == head) {
                long r = tryAcquireShared(arg);
                if (r >= 0) {
                    setHeadAndPropagate(node, r);
                    p.next = null; // help GC
                    failed = false;
                    return;
                }
            }
            // 當前線程一直等待,直到獲取到共享鎖。
            // 如果線程在等待過程中被中斷過,則再次中斷該線程(還原之前的中斷狀態)。
            if (shouldParkAfterFailedAcquire(p, node) &&
                parkAndCheckInterrupt())
                throw new InterruptedException();
        }
    } finally {
        if (failed)
            cancelAcquire(node);
    }
}

說明:doAcquireSharedInterruptibly()會使當前線程一直等待,直到當前線程獲取到共享鎖(或被中斷)才返回。
(01) addWaiter(Node.SHARED)的作用是,創建”當前線程“的Node節點,且Node中記錄的鎖的類型是”共享鎖“(Node.SHARED);並將該節點添加到CLH隊列末尾。關於Node和CLH在"Java多線程系列--“JUC鎖”03之 公平鎖(一)"已經詳細介紹過,這里就不再重復說明了。
(02) node.predecessor()的作用是,獲取上一個節點。如果上一節點是CLH隊列的表頭,則”嘗試獲取共享鎖“。
(03) shouldParkAfterFailedAcquire()的作用和它的名稱一樣,如果在嘗試獲取鎖失敗之后,線程應該等待,則返回true;否則,返回false。
(04) 當shouldParkAfterFailedAcquire()返回ture時,則調用parkAndCheckInterrupt(),當前線程會進入等待狀態,直到獲取到共享鎖才繼續運行。
doAcquireSharedInterruptibly()中的shouldParkAfterFailedAcquire(), parkAndCheckInterrupt等函數在"Java多線程系列--“JUC鎖”03之 公平鎖(一)"中介紹過,這里也就不再詳細說明了。


2.2 公平信號量的釋放

Semaphore中公平信號量(FairSync)的釋放API如下:

public void release() {
    sync.releaseShared(1);
}

public void release(int permits) {
    if (permits < 0) throw new IllegalArgumentException();
    sync.releaseShared(permits);
}

信號量的releases()釋放函數,實際上是調用的AQS中的releaseShared()。

 

releaseShared()在AQS中實現,源碼如下:

public final boolean releaseShared(int arg) {
    if (tryReleaseShared(arg)) {
        doReleaseShared();
        return true;
    }
    return false;
}

說明:releaseShared()的目的是讓當前線程釋放它所持有的共享鎖。
它首先會通過tryReleaseShared()去嘗試釋放共享鎖。嘗試成功,則直接返回;嘗試失敗,則通過doReleaseShared()去釋放共享鎖。

 

Semaphore重寫了tryReleaseShared(),它的源碼如下:

protected final boolean tryReleaseShared(int releases) {
    for (;;) {
        // 獲取“可以獲得的信號量的許可數”
        int current = getState();
        // 獲取“釋放releases個信號量許可之后,剩余的信號量許可數”
        int next = current + releases;
        if (next < current) // overflow
            throw new Error("Maximum permit count exceeded");
        // 設置“可以獲得的信號量的許可數”為next。
        if (compareAndSetState(current, next))
            return true;
    }
}

 

如果tryReleaseShared()嘗試釋放共享鎖失敗,則會調用doReleaseShared()去釋放共享鎖。doReleaseShared()的源碼如下:

private void doReleaseShared() {
    for (;;) {
        // 獲取CLH隊列的頭節點
        Node h = head;
        // 如果頭節點不為null,並且頭節點不等於tail節點。
        if (h != null && h != tail) {
            // 獲取頭節點對應的線程的狀態
            int ws = h.waitStatus;
            // 如果頭節點對應的線程是SIGNAL狀態,則意味着“頭節點的下一個節點所對應的線程”需要被unpark喚醒。
            if (ws == Node.SIGNAL) {
                // 設置“頭節點對應的線程狀態”為空狀態。失敗的話,則繼續循環。
                if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
                    continue;
                // 喚醒“頭節點的下一個節點所對應的線程”。
                unparkSuccessor(h);
            }
            // 如果頭節點對應的線程是空狀態,則設置“文件點對應的線程所擁有的共享鎖”為其它線程獲取鎖的空狀態。
            else if (ws == 0 &&
                     !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
                continue;                // loop on failed CAS
        }
        // 如果頭節點發生變化,則繼續循環。否則,退出循環。
        if (h == head)                   // loop if head changed
            break;
    }
}

說明:doReleaseShared()會釋放“共享鎖”。它會從前往后的遍歷CLH隊列,依次“喚醒”然后“執行”隊列中每個節點對應的線程;最終的目的是讓這些線程釋放它們所持有的信號量。

 

3 非公平信號量獲取和釋放

Semaphore中的非公平信號量是NonFairSync。在Semaphore中,“非公平信號量許可的釋放(release)”與“公平信號量許可的釋放(release)”是一樣的。
不同的是它們獲取“信號量許可”的機制不同,下面是非公平信號量獲取信號量許可的代碼。

非公平信號量的tryAcquireShared()實現如下:

protected int tryAcquireShared(int acquires) {
    return nonfairTryAcquireShared(acquires);
}

 

nonfairTryAcquireShared()的實現如下:

final int nonfairTryAcquireShared(int acquires) {
    for (;;) {
        // 設置“可以獲得的信號量的許可數”
        int available = getState();
        // 設置“獲得acquires個信號量許可之后,剩余的信號量許可數”
        int remaining = available - acquires;
        // 如果“剩余的信號量許可數>=0”,則設置“可以獲得的信號量許可數”為remaining。
        if (remaining < 0 ||
            compareAndSetState(available, remaining))
            return remaining;
    }
}

說明:非公平信號量的tryAcquireShared()調用AQS中的nonfairTryAcquireShared()。而在nonfairTryAcquireShared()的for循環中,它都會直接判斷“當前剩余的信號量許可數”是否足夠;足夠的話,則直接“設置可以獲得的信號量許可數”,進而再獲取信號量。
而公平信號量的tryAcquireShared()中,在獲取信號量之前會通過if (hasQueuedPredecessors())來判斷“當前線程是不是在CLH隊列的頭部”,是的話,則返回-1。 

 

Semaphore示例

 1 import java.util.concurrent.ExecutorService; 
 2 import java.util.concurrent.Executors; 
 3 import java.util.concurrent.Semaphore; 
 4 
 5 public class SemaphoreTest1 { 
 6     private static final int SEM_MAX = 10;
 7     public static void main(String[] args) { 
 8         Semaphore sem = new Semaphore(SEM_MAX);
 9         //創建線程池
10         ExecutorService threadPool = Executors.newFixedThreadPool(3);
11         //在線程池中執行任務
12         threadPool.execute(new MyThread(sem, 5));
13         threadPool.execute(new MyThread(sem, 4));
14         threadPool.execute(new MyThread(sem, 7));
15         //關閉池
16         threadPool.shutdown();
17     }
18 }
19 
20 class MyThread extends Thread {
21     private volatile Semaphore sem;    // 信號量
22     private int count;        // 申請信號量的大小 
23 
24     MyThread(Semaphore sem, int count) {
25         this.sem = sem;
26         this.count = count;
27     }
28 
29     public void run() {
30         try {
31             // 從信號量中獲取count個許可
32             sem.acquire(count);
33 
34             Thread.sleep(2000);
35             System.out.println(Thread.currentThread().getName() + " acquire count="+count);
36         } catch (InterruptedException e) {
37             e.printStackTrace();
38         } finally {
39             // 釋放給定數目的許可,將其返回到信號量。
40             sem.release(count);
41             System.out.println(Thread.currentThread().getName() + " release " + count + "");
42         }
43     }
44 }

(某一次)運行結果:

pool-1-thread-1 acquire count=5
pool-1-thread-2 acquire count=4
pool-1-thread-1 release 5
pool-1-thread-2 release 4
pool-1-thread-3 acquire count=7
pool-1-thread-3 release 7

結果說明:信號量sem的許可總數是10個;共3個線程,分別需要獲取的信號量許可數是5,4,7。前面兩個線程獲取到信號量的許可后,sem中剩余的可用的許可數是1;因此,最后一個線程必須等前兩個線程釋放了它們所持有的信號量許可之后,才能獲取到7個信號量許可。

 


更多內容 

1. Java多線程系列--“JUC鎖”01之 框架 

2. Java多線程系列--“JUC鎖”02之 互斥鎖ReentrantLock 

3. Java多線程系列--“JUC鎖”03之 公平鎖(一) 

4. Java多線程系列--“JUC鎖”04之 公平鎖(二)

5. Java多線程系列--“JUC鎖”05之 非公平鎖

6. Java多線程系列--“JUC鎖”06之 Condition條件 

7. Java多線程系列--“JUC鎖”07之 LockSupport 

8. Java多線程系列--“JUC鎖”08之 共享鎖和ReentrantReadWriteLock

9. Java多線程系列--“JUC鎖”09之 CountDownLatch原理和示例

10. Java多線程系列--“JUC鎖”10之 CyclicBarrier原理和示例

11. Java多線程系列目錄(共xx篇)

  


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM