Symbol definition:
is n linear subspace of
.
is the dimension of
.
is N noise-free data points.
is a rank-
matrix, represent
(
>
) points that lie in
.
is a unknown permutation matrix.
SSC Algorithm:
Step 1: Solve the sparse optimization program
① Uncorrupted data
② Corrupted data
ps: E corresponds to a matrix of sparse outlying entries, and Z is a noise matrix.
Step 2: Normalize the columns of C as .
ps: max norm : .
Step 3: Form a similarity grahp with N nodes wegiths on the edges between the nodes by
.
ps:
Step: Use spectral clustering to the similarity graph.
Output: .
Subspace-Sparse Recovery Theory
Definition:
①
ps: is said to be independent.
②
③ Principle angle between and
Independent Subspace Model:
----------------------------------------------------
其實,這篇paper主要是講了SSC算法,在求稀疏解時的限定條件原本應該是0-范數最小,求最稀疏解,可是0-范數根本沒法求,只具有實際意義,求解是個NP-hard問題,所以利用凸規划松弛方法,退而且其次,選擇1-范數,使1-范數最小,得到稀疏解。Paper的后面證明了,利用1-范數最小解求解稀疏解,也可以得到理想的稀疏表示,可以使屬於不同空間的點沒有關聯。也就是說Paper的精髓就在於證明1-范數最小值得到的稀疏解,和0-范數最小值得到的稀疏解的效果差不多。