Scalable IO in Java
http://gee.cs.oswego.edu/dl/cpjslides/nio.pdf
大部分IO都是下面這個步驟,
Most have same basic structure:
Read request
Decode request
Process service
Encode reply
Send reply
關鍵是如何處理並發, 最原始就是單純的用多線程
class Server implements Runnable { public void run() { try { ServerSocket ss = new ServerSocket(PORT); while (!Thread.interrupted()) new Thread(new Handler(ss.accept())).start(); //創建新線程來handle // or, single-threaded, or a thread pool } catch (IOException ex) { /* ... */ } } static class Handler implements Runnable { final Socket socket; Handler(Socket s) { socket = s; } public void run() { try { byte[] input = new byte[MAX_INPUT]; socket.getInputStream().read(input); byte[] output = process(input); socket.getOutputStream().write(output); } catch (IOException ex) { /* ... */ } } private byte[] process(byte[] cmd) { /* ... */ } } }
顯然簡單的多線程會帶來擴展性問題, 當client數量變的很多的時候, 還其他的可用性, 性能的問題
解決方法就是Divide-and-conquer, 分開后, 就需要Event-driven Designs來串聯起來...
單線程版本的Reactor, 所有事情read, process, write都由單個線程完成, 完成一步重新設置下一步的event, 然后干其他的事
問題當然就是, 其中任何步驟不能消耗太多時間, 因為只有一個線程, 你占住了就會block其他任務
ps, 不明白為什么要畫那么大個acceptor, 只是作為第一步的callback對象...
看代碼會更清楚,
class Reactor implements Runnable { final Selector selector; final ServerSocketChannel serverSocket; Reactor(int port) throws IOException { //Reactor初始化 selector = Selector.open(); serverSocket = ServerSocketChannel.open(); serverSocket.socket().bind(new InetSocketAddress(port)); serverSocket.configureBlocking(false); //非阻塞 SelectionKey sk = serverSocket.register(selector, SelectionKey.OP_ACCEPT); //分步處理,第一步,接收accept事件 sk.attach(new Acceptor()); //attach callback object, Acceptor } public void run() { try { while (!Thread.interrupted()) { selector.select(); Set selected = selector.selectedKeys(); Iterator it = selected.iterator(); while (it.hasNext()) dispatch((SelectionKey)(it.next()); //Reactor負責dispatch收到的事件 selected.clear(); } } catch (IOException ex) { /* ... */ } } void dispatch(SelectionKey k) { Runnable r = (Runnable)(k.attachment()); //調用之前注冊的callback對象 if (r != null) r.run(); } class Acceptor implements Runnable { // inner public void run() { try { SocketChannel c = serverSocket.accept(); if (c != null) new Handler(selector, c); } catch(IOException ex) { /* ... */ } } } } final class Handler implements Runnable { final SocketChannel socket; final SelectionKey sk; ByteBuffer input = ByteBuffer.allocate(MAXIN); ByteBuffer output = ByteBuffer.allocate(MAXOUT); static final int READING = 0, SENDING = 1; int state = READING; Handler(Selector sel, SocketChannel c) throws IOException { socket = c; c.configureBlocking(false); // Optionally try first read now sk = socket.register(sel, 0); sk.attach(this); //將Handler作為callback對象 sk.interestOps(SelectionKey.OP_READ); //第二步,接收Read事件 sel.wakeup(); } boolean inputIsComplete() { /* ... */ } boolean outputIsComplete() { /* ... */ } void process() { /* ... */ } public void run() { try { if (state == READING) read(); else if (state == SENDING) send(); } catch (IOException ex) { /* ... */ } } void read() throws IOException { socket.read(input); if (inputIsComplete()) { process(); state = SENDING; // Normally also do first write now sk.interestOps(SelectionKey.OP_WRITE); //第三步,接收write事件 } } void send() throws IOException { socket.write(output); if (outputIsComplete()) sk.cancel(); //write完就結束了, 關閉select key } } //上面 的實現用Handler來同時處理Read和Write事件, 所以里面出現狀態判斷 //我們可以用State-Object pattern來更優雅的實現 class Handler { // ... public void run() { // initial state is reader socket.read(input); if (inputIsComplete()) { process(); sk.attach(new Sender()); //狀態遷移, Read后變成write, 用Sender作為新的callback對象 sk.interest(SelectionKey.OP_WRITE); sk.selector().wakeup(); } } class Sender implements Runnable { public void run(){ // ... socket.write(output); if (outputIsComplete()) sk.cancel(); } } }
單線程模式的局限還是比較明顯的
所以改進是, 將比較耗時的部分, 從reactor線程中分離出去, 讓reactor專門負責IO
而另外創建Thread Pool和queue來緩存和處理任務
所以其實已經進化成Proactor模式, 異步模式
class Handler implements Runnable { // uses util.concurrent thread pool static PooledExecutor pool = new PooledExecutor(...); static final int PROCESSING = 3; // ... synchronized void read() { // ... socket.read(input); if (inputIsComplete()) { state = PROCESSING; pool.execute(new Processer()); //使用線程pool異步執行 } } synchronized void processAndHandOff() { process(); state = SENDING; // or rebind attachment sk.interest(SelectionKey.OP_WRITE); //process完,開始等待write事件 } class Processer implements Runnable { public void run() { processAndHandOff(); } } }
使用多個reactor進程, 主reactor只負責accept, 然后將接收到的socketchannel交給subReactor去listen和處理
當然也可以在subReactor下加上線程池進行異步處理
坦白的說, 沒看出用多個reactor有啥大的提升, 降低mainReactor listen的負擔?
Selector[] selectors; //subReactors集合, 一個selector代表一個subReactor int next = 0; class Acceptor { // ... public synchronized void run() { ... Socket connection = serverSocket.accept(); //主selector負責accept if (connection != null) new Handler(selectors[next], connection); //選個subReactor去負責接收到的connection if (++next == selectors.length) next = 0; } }