使用matplotlib的示例:調整字體-設置colormap和colorbar
# -*- coding: utf-8 -*-
#**********************************************************
import os
import numpy as np
import wlab #pip install wlab
import matplotlib
import matplotlib.cm as cm
import matplotlib.pyplot as plt
from matplotlib.ticker import MultipleLocator
from scipy.interpolate import griddata
matplotlib.rcParams['xtick.direction'] = 'out'
matplotlib.rcParams['ytick.direction'] = 'out'
#**********************************************************
FreqPLUS=['F06925','F10650','F23800','F18700','F36500','F89000']
#
FindPath='/d3/MWRT/R20130805/'
#**********************************************************
fig = plt.figure(figsize=(8,6), dpi=72, facecolor="white")
axes = plt.subplot(111)
axes.cla()#清空坐標軸內的所有內容
#指定圖形的字體
font = {'family' : 'serif',
'color' : 'darkred',
'weight' : 'normal',
'size' : 16,
}
#**********************************************************
# 查找目錄總文件名中保護F06925,EMS和txt字符的文件
for fp in FreqPLUS:
FlagStr=[fp,'EMS','txt']
FileList=wlab.GetFileList(FindPath,FlagStr)
#
LST=[]#地表溫度
EMS=[]#地表發射率
TBH=[]#水平極化亮溫
TBV=[]#垂直極化亮溫
#
findex=0
for fn in FileList:
findex=findex+1
if (os.path.isfile(fn)):
print(str(findex)+'-->'+fn)
#fn='/d3/MWRT/R20130805/F06925_EMS60.txt'
data=wlab.dlmread(fn)
EMS=EMS+list(data[:,1])#地表發射率
LST=LST+list(data[:,2])#溫度
TBH=TBH+list(data[:,8])#水平亮溫
TBV=TBV+list(data[:,9])#垂直亮溫
#-----------------------------------------------------------
#生成格點數據,利用griddata插值
grid_x, grid_y = np.mgrid[275:315:1, 0.60:0.95:0.01]
grid_z = griddata((LST,EMS), TBH, (grid_x, grid_y), method='cubic')
#將橫縱坐標都映射到(0,1)的范圍內
extent=(0,1,0,1)
#指定colormap
cmap = matplotlib.cm.jet
#設定每個圖的colormap和colorbar所表示范圍是一樣的,即歸一化
norm = matplotlib.colors.Normalize(vmin=160, vmax=300)
#顯示圖形,此處沒有使用contourf #>>>ctf=plt.contourf(grid_x,grid_y,grid_z)
gci=plt.imshow(grid_z.T, extent=extent, origin='lower',cmap=cmap, norm=norm)
#配置一下坐標刻度等
ax=plt.gca()
ax.set_xticks(np.linspace(0,1,9))
ax.set_xticklabels( ('275', '280', '285', '290', '295', '300', '305', '310', '315'))
ax.set_yticks(np.linspace(0,1,8))
ax.set_yticklabels( ('0.60', '0.65', '0.70', '0.75', '0.80','0.85','0.90','0.95'))
#顯示colorbar
cbar = plt.colorbar(gci)
cbar.set_label('$T_B(K)$',fontdict=font)
cbar.set_ticks(np.linspace(160,300,8))
cbar.set_ticklabels( ('160', '180', '200', '220', '240', '260', '280', '300'))
#設置label
ax.set_ylabel('Land Surface Emissivity',fontdict=font)
ax.set_xlabel('Land Surface Temperature(K)',fontdict=font) #陸地地表溫度LST
#設置title
titleStr='$T_B$ for Freq = '+str(float(fp[1:-1])*0.01)+'GHz'
plt.title(titleStr)
figname=fp+'.png'
plt.savefig(figname)
plt.clf()#清除圖形
#plt.show()
print('ALL -> Finished OK')
上面的例子中,每個保存的圖,都是用同樣的colormap,並且每個圖的顏色映射值都是一樣的,也就是說第一個圖中如果200表示藍色,那么其他圖中的200也表示藍色。
示例的圖形如下:

