使用matplotlib的示例:調整字體-設置colormap和colorbar
# -*- coding: utf-8 -*- #********************************************************** import os import numpy as np import wlab #pip install wlab import matplotlib import matplotlib.cm as cm import matplotlib.pyplot as plt from matplotlib.ticker import MultipleLocator from scipy.interpolate import griddata matplotlib.rcParams['xtick.direction'] = 'out' matplotlib.rcParams['ytick.direction'] = 'out' #********************************************************** FreqPLUS=['F06925','F10650','F23800','F18700','F36500','F89000'] # FindPath='/d3/MWRT/R20130805/' #********************************************************** fig = plt.figure(figsize=(8,6), dpi=72, facecolor="white") axes = plt.subplot(111) axes.cla()#清空坐標軸內的所有內容 #指定圖形的字體 font = {'family' : 'serif', 'color' : 'darkred', 'weight' : 'normal', 'size' : 16, } #********************************************************** # 查找目錄總文件名中保護F06925,EMS和txt字符的文件 for fp in FreqPLUS: FlagStr=[fp,'EMS','txt'] FileList=wlab.GetFileList(FindPath,FlagStr) # LST=[]#地表溫度 EMS=[]#地表發射率 TBH=[]#水平極化亮溫 TBV=[]#垂直極化亮溫 # findex=0 for fn in FileList: findex=findex+1 if (os.path.isfile(fn)): print(str(findex)+'-->'+fn) #fn='/d3/MWRT/R20130805/F06925_EMS60.txt' data=wlab.dlmread(fn) EMS=EMS+list(data[:,1])#地表發射率 LST=LST+list(data[:,2])#溫度 TBH=TBH+list(data[:,8])#水平亮溫 TBV=TBV+list(data[:,9])#垂直亮溫 #----------------------------------------------------------- #生成格點數據,利用griddata插值 grid_x, grid_y = np.mgrid[275:315:1, 0.60:0.95:0.01] grid_z = griddata((LST,EMS), TBH, (grid_x, grid_y), method='cubic') #將橫縱坐標都映射到(0,1)的范圍內 extent=(0,1,0,1) #指定colormap cmap = matplotlib.cm.jet #設定每個圖的colormap和colorbar所表示范圍是一樣的,即歸一化 norm = matplotlib.colors.Normalize(vmin=160, vmax=300) #顯示圖形,此處沒有使用contourf #>>>ctf=plt.contourf(grid_x,grid_y,grid_z) gci=plt.imshow(grid_z.T, extent=extent, origin='lower',cmap=cmap, norm=norm) #配置一下坐標刻度等 ax=plt.gca() ax.set_xticks(np.linspace(0,1,9)) ax.set_xticklabels( ('275', '280', '285', '290', '295', '300', '305', '310', '315')) ax.set_yticks(np.linspace(0,1,8)) ax.set_yticklabels( ('0.60', '0.65', '0.70', '0.75', '0.80','0.85','0.90','0.95')) #顯示colorbar cbar = plt.colorbar(gci) cbar.set_label('$T_B(K)$',fontdict=font) cbar.set_ticks(np.linspace(160,300,8)) cbar.set_ticklabels( ('160', '180', '200', '220', '240', '260', '280', '300')) #設置label ax.set_ylabel('Land Surface Emissivity',fontdict=font) ax.set_xlabel('Land Surface Temperature(K)',fontdict=font) #陸地地表溫度LST #設置title titleStr='$T_B$ for Freq = '+str(float(fp[1:-1])*0.01)+'GHz' plt.title(titleStr) figname=fp+'.png' plt.savefig(figname) plt.clf()#清除圖形 #plt.show() print('ALL -> Finished OK')
上面的例子中,每個保存的圖,都是用同樣的colormap,並且每個圖的顏色映射值都是一樣的,也就是說第一個圖中如果200表示藍色,那么其他圖中的200也表示藍色。
示例的圖形如下: