gcc編譯靜態庫和動態庫


 
今天要用到靜態庫和動態庫,於是寫了幾個例子來鞏固一下基礎。
hello1.c ————————————————————
#include <stdio.h>
void print1(int i) { int j; for(j=0;j<i;j++) { printf("%d * %d = %d\n",j,j,j*j); }     }
hello2.c _________________________________________________
#include <stdio.h>
void print2(char *arr) { char c; int i=0; while((c=arr[i++])!='\0') { printf("%d****%c\n",i,c); } }
hello.c ____________________________________________________
void print1(int); void print2(char *);
int main(int argc,char **argv) { int i=100; char *arr="THIS IS LAYMU'S HOME!"; print1(i); print2(arr);
return 0; }

可以看到hello.c要用到hello1.c中的print1函數和hello2.c中的print2函數。所以可以把這兩個函數組合為庫,以供更多的程序作為組件來調用。

方法一:將hello1.c和hello2.c編譯成靜態鏈接庫.a
[root@localhost main5]#gcc -c hello1.c hello2.c   
  //將hello1.c和hello2.c分別編譯為hello1.o和hello2.o,其中-c選項意為只編譯不鏈接。
[root@localhost main5]#ar -r libhello.a hello1.o hello2.o   
//將hello1.o和hello2.o組合為libhello.a這個靜態鏈接庫
[root@localhost main5]#cp libhello.a /usr/lib     
//將libhello.a拷貝到/usr/lib目錄下,作為一個系統共享的靜態鏈接庫
[root@localhost main5]#gcc -o hello hello.c -lhello  
//將hello.c編譯為可執行程序hello,這個過程用到了-lhello選項,這個選項告訴gcc編譯器到/usr/lib目錄下去找libhello.a的靜態鏈接庫
以上的過程類似於windows下的lib靜態鏈接庫的編譯及調用過程。
方法二:將hello1.o和hello2.o組合成動態鏈接庫.so
[root@localhost main5]#gcc -c -fpic hello1.c hello2.c   
 //將hello1.c和hello2.c編譯成hello1.o和hello2.o,-c意為只編譯不鏈接,-fpic意為位置獨立代碼,指示編譯程序生成的代碼要適合共享庫的內容這樣的代碼能夠根據載入內存的位置計算內部地址。
[root@localhost main5]#gcc -shared hello1.o hello2.o -o hello.so 
  //將hello1.o和hello2.o組合為shared object,即動態鏈接庫
[root@localhost main5]#cp hello.so /usr/lib  
  //將hello.so拷貝到/usr/lib目錄下
[root@localhost main5]#gcc -o hello hello.c hello.so  
//將hello.c編譯鏈接為hello的可執行程序,這個過程用到了動態鏈接庫hello.so

在這里要廢話幾句,其實一切的二進制信息都有其運作的機制,只要弄清楚了它的機制,並能夠實現之,則任何此時此刻無法想象之事都將成為現實。當然,這兩者之間的巨大鴻溝需要頂級的設計思想和頂級的代碼來跨越。


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM