redis 一致性hash


 

使用zookeeper 實現一致性hash。

redis服務啟動時,將自己的路由信息通過臨時節點方式寫入zk,客戶端通過zk client讀取可用的路由信息。

image_thumb[12]

 

服務端

使用python 腳本寫的守護進程:https://github.com/LittlePeng/redis-manager

腳本部署在redis-server本機,定時ping redis-server

節點失效的情況:

1.服務器與ZK服務器失去連接 Session Expired ,環境網絡波動造成,需要根據網絡情況設置適當zookeeper的Timeout時間,避免此情況發生

2. 服務器宕機,Zookeeper server 發現zkclient ping超時,就會通知節點下線

3. redis-server 掛了,redis-manager ping 超時主動斷開與zookeeper server的連接

 

客戶端

需要zkclient監控 節點變化,及時更新路由策略

下面是C# 版本一致性hash算法:

   1:  class KetamaNodeLocator
   2:      {
   3:          private Dictionary<long, RedisCluster> ketamaNodes;
   4:          private HashAlgorithm hashAlg;
   5:          private int numReps = 160;
   6:          private long[] keys;
   7:   
   8:          public KetamaNodeLocator(List<RedisCluster> nodes)
   9:          {
  10:              ketamaNodes = new Dictionary<long, RedisCluster>();
  11:   
  12:              //對所有節點,生成nCopies個虛擬結點
  13:              for (int j = 0; j < nodes.Count; j++) {
  14:                  RedisCluster node = nodes[j];
  15:                  int numReps = node.Weight;
  16:   
  17:                  //每四個虛擬結點為一組
  18:                  for (int i = 0; i < numReps / 4; i++) {
  19:                      byte[] digest = ComputeMd5(
  20:                          String.Format("{0}_{1}_{2}", node.RoleName, node.RouteValue, i));
  21:   
  22:                      /** Md5是一個16字節長度的數組,將16字節的數組每四個字節一組,
  23:                       * 分別對應一個虛擬結點,這就是為什么上面把虛擬結點四個划分一組的原因*/
  24:                      for (int h = 0; h < 4; h++) {
  25:   
  26:                          long rv = ((long)(digest[3 + h * 4] & 0xFF) << 24)
  27:                                     | ((long)(digest[2 + h * 4] & 0xFF) << 16)
  28:                                     | ((long)(digest[1 + h * 4] & 0xFF) << 8)
  29:                                     | ((long)digest[0 + h * 4] & 0xFF);
  30:   
  31:                          rv = rv & 0xffffffffL; /* Truncate to 32-bits */
  32:                          ketamaNodes[rv] = node;
  33:                      }
  34:                  }
  35:              }
  36:   
  37:              keys = ketamaNodes.Keys.OrderBy(p => p).ToArray();
  38:          }
  41:          public RedisCluster GetWorkerNode(string k)
  42:          {
  43:              byte[] digest = ComputeMd5(k);
  44:              return GetNodeInner(Hash(digest, 0));
  45:          }
  46:   
  47:          RedisCluster GetNodeInner(long hash)
  48:          {
  49:              if (ketamaNodes.Count == 0)
  50:                  return null;
  51:              long key = hash;
  52:              int near = 0;
  53:              int index = Array.BinarySearch(keys, hash);
  54:              if (index < 0) {
  55:                  near = (~index);
  56:                  if (near == keys.Length)
  57:                      near = 0;
  58:              }
  59:              else {
  60:                  near = index;
  61:              }
  62:   
  63:              return ketamaNodes[keys[near]];
  64:          }
  65:   
  66:          public static long Hash(byte[] digest, int nTime)
  67:          {
  68:              long rv = ((long)(digest[3 + nTime * 4] & 0xFF) << 24)
  69:                      | ((long)(digest[2 + nTime * 4] & 0xFF) << 16)
  70:                      | ((long)(digest[1 + nTime * 4] & 0xFF) << 8)
  71:                      | ((long)digest[0 + nTime * 4] & 0xFF);
  72:   
  73:              return rv & 0xffffffffL; /* Truncate to 32-bits */
  74:          }
 
  79:          public static byte[] ComputeMd5(string k)
  80:          {
  81:              MD5 md5 = new MD5CryptoServiceProvider();
  82:   
  83:              byte[] keyBytes = md5.ComputeHash(Encoding.UTF8.GetBytes(k));
  84:              md5.Clear();
  85:              return keyBytes;
  86:          }
  87:      }


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM