Storm starter - RollingTopWords


Implementing Real-Time Trending Topics With a Distributed Rolling Count Algorithm in Storm, 圖文並茂, 早看到就直接翻譯這篇了...

 

計算top N words的topology, 用於比如trending topics or trending images on Twitter.

實現了滑動窗口計數和TopN排序, 比較有意思, 具體分析一下代碼

Topology

這是一個稍微復雜些的topology, 主要體現在使用不同的grouping方式, fieldsGrouping和globalGrouping

 String spoutId = "wordGenerator";
 String counterId = "counter";
 String intermediateRankerId = "intermediateRanker";
 String totalRankerId = "finalRanker";
 builder.setSpout(spoutId, new TestWordSpout(), 5);
 builder.setBolt(counterId, new RollingCountBolt(9, 3), 4).fieldsGrouping(spoutId, new Fields("word"));
 builder.setBolt(intermediateRankerId, new IntermediateRankingsBolt(TOP_N), 4).fieldsGrouping(counterId, new Fields("obj"));
 builder.setBolt(totalRankerId, new TotalRankingsBolt TOP_N)).globalGrouping(intermediateRankerId);

 

RollingCountBolt

首先使用RollingCountBolt, 並且此處是按照word進行fieldsGrouping的, 所以相同的word會被發送到同一個bolt, 這個field id是在上一級的declareOutputFields時指定的

RollingCountBolt, 用於基於時間窗口的counting, 所以需要兩個參數, the length of the sliding window in seconds和the emit frequency in seconds

new RollingCountBolt(9, 3), 意味着output the latest 9 minutes sliding window every 3 minutes

1. 創建SlidingWindowCounter(SlidingWindowCounter和SlotBasedCounter參考下面)
counter = new SlidingWindowCounter(this.windowLengthInSeconds / this.windowUpdateFrequencyInSeconds);
如何定義slot數? 對於9 min的時間窗口, 每3 min emit一次數據, 那么就需要9/3=3個slot
那么在3 min以內, 不停的調用countObjAndAck(tuple)來遞增所有對象該slot上的計數
每3分鍾會觸發調用emitCurrentWindowCounts, 用於滑動窗口(通過getCountsThenAdvanceWindow), 並emit (Map<obj, 窗口內的計數和>, 實際使用時間)
因為實際emit觸發時間, 不可能剛好是3 min, 會有誤差, 所以需要給出實際使用時間

 

2. TupleHelpers.isTickTuple(tuple), TickTuple

前面沒有說的一點是, 如何觸發emit? 這是比較值得說明的一點, 因為其使用Storm的TickTuple特性.
這個功能挺有用, 比如數據庫批量存儲, 或者這里的時間窗口的統計等應用
"__system" component會定時往task發送 "__tick" stream的tuple
發送頻率由TOPOLOGY_TICK_TUPLE_FREQ_SECS來配置, 可以在default.ymal里面配置
也可以在代碼里面通過getComponentConfiguration()來進行配置,

public Map<String, Object> getComponentConfiguration() {
     Map<String, Object> conf = new HashMap<String, Object>();
     conf.put(Config.TOPOLOGY_TICK_TUPLE_FREQ_SECS, emitFrequencyInSeconds);
     return conf;

配置完成后, storm就會定期的往task發送ticktuple
只需要通過isTickTuple來判斷是否為tickTuple, 就可以完成定時觸發的功能

public static boolean isTickTuple(Tuple tuple) {
    return tuple.getSourceComponent().equals(Constants.SYSTEM_COMPONENT_ID) \\ SYSTEM_COMPONENT_ID == "__system"
        && tuple.getSourceStreamId().equals(Constants.SYSTEM_TICK_STREAM_ID); \\ SYSTEM_TICK_STREAM_ID == "__tick"
}

最終, 這個blot的輸出為, collector.emit(new Values(obj, count, actualWindowLengthInSeconds));
obj, count(窗口內的計數和), 實際使用時間

 

SlotBasedCounter

基於slot的counter, 模板類, 可以指定被計數對象的類型T
這個類其實很簡單, 實現計數對象和一組slot(用long數組實現)的map, 並可以對任意slot做increment或reset等操作

關鍵結構為Map<T, long[]> objToCounts, 為每個obj都對應於一個大小為numSlots的long數組, 所以對每個obj可以計numSlots個數
incrementCount, 遞增某個obj的某個slot, 如果是第一次需要創建counts數組
getCount, getCounts, 獲取某obj的某slot值, 或某obj的所有slot值的和
wipeSlot, resetSlotCountToZero, reset所有對象的某solt為0, reset某obj的某slot為0
wipeZeros, 刪除所有total count為0的obj, 以釋放空間

public final class SlotBasedCounter<T> implements Serializable {

    private static final long serialVersionUID = 4858185737378394432L;

    private final Map<T, long[]> objToCounts = new HashMap<T, long[]>();
    private final int numSlots;

    public SlotBasedCounter(int numSlots) {
        if (numSlots <= 0) {
            throw new IllegalArgumentException("Number of slots must be greater than zero (you requested " + numSlots
                + ")");
        }
        this.numSlots = numSlots;
    }

    public void incrementCount(T obj, int slot) {
        long[] counts = objToCounts.get(obj);
        if (counts == null) {
            counts = new long[this.numSlots];
            objToCounts.put(obj, counts);
        }
        counts[slot]++;
    }

    public long getCount(T obj, int slot) {
        long[] counts = objToCounts.get(obj);
        if (counts == null) {
            return 0;
        }
        else {
            return counts[slot];
        }
    }

    public Map<T, Long> getCounts() {
        Map<T, Long> result = new HashMap<T, Long>();
        for (T obj : objToCounts.keySet()) {
            result.put(obj, computeTotalCount(obj));
        }
        return result;
    }

    private long computeTotalCount(T obj) {
        long[] curr = objToCounts.get(obj);
        long total = 0;
        for (long l : curr) {
            total += l;
        }
        return total;
    }

    /**
     * Reset the slot count of any tracked objects to zero for the given slot.
     * 
     * @param slot
     */
    public void wipeSlot(int slot) {
        for (T obj : objToCounts.keySet()) {
            resetSlotCountToZero(obj, slot);
        }
    }

    private void resetSlotCountToZero(T obj, int slot) {
        long[] counts = objToCounts.get(obj);
        counts[slot] = 0;
    }

    private boolean shouldBeRemovedFromCounter(T obj) {
        return computeTotalCount(obj) == 0;
    }

    /**
     * Remove any object from the counter whose total count is zero (to free up memory).
     */
    public void wipeZeros() {
        Set<T> objToBeRemoved = new HashSet<T>();
        for (T obj : objToCounts.keySet()) {
            if (shouldBeRemovedFromCounter(obj)) {
                objToBeRemoved.add(obj);
            }
        }
        for (T obj : objToBeRemoved) {
            objToCounts.remove(obj);
        }
    }
}

SlidingWindowCounter

SlidingWindowCounter只是對SlotBasedCounter做了進一步的封裝, 通過headSlot和tailSlot提供sliding window的概念

incrementCount, 只能對headSlot進行increment, 其他slot作為窗口中的歷史數據

核心的操作為, getCountsThenAdvanceWindow
1. 取出Map<T, Long> counts, 對象和窗口內所有slots求和值的map
2. 調用wipeZeros, 刪除已經不被使用的obj, 釋放空間
3. 最重要的一步, 清除tailSlot, 並advanceHead, 以實現滑動窗口
    advanceHead的實現, 如何在數組實現循環的滑動窗口

public final class SlidingWindowCounter<T> implements Serializable {

    private static final long serialVersionUID = -2645063988768785810L;

    private SlotBasedCounter<T> objCounter;
    private int headSlot;
    private int tailSlot;
    private int windowLengthInSlots;

    public SlidingWindowCounter(int windowLengthInSlots) {
        if (windowLengthInSlots < 2) {
            throw new IllegalArgumentException("Window length in slots must be at least two (you requested "
                + windowLengthInSlots + ")");
        }
        this.windowLengthInSlots = windowLengthInSlots;
        this.objCounter = new SlotBasedCounter<T>(this.windowLengthInSlots);

        this.headSlot = 0;
        this.tailSlot = slotAfter(headSlot);
    }

    public void incrementCount(T obj) {
        objCounter.incrementCount(obj, headSlot);
    }

    /**
     * Return the current (total) counts of all tracked objects, then advance the window.
     * 
     * Whenever this method is called, we consider the counts of the current sliding window to be available to and
     * successfully processed "upstream" (i.e. by the caller). Knowing this we will start counting any subsequent
     * objects within the next "chunk" of the sliding window.
     * 
     * @return
     */
    public Map<T, Long> getCountsThenAdvanceWindow() {
        Map<T, Long> counts = objCounter.getCounts();
        objCounter.wipeZeros();
        objCounter.wipeSlot(tailSlot);
        advanceHead();
        return counts;
    }

    private void advanceHead() {
        headSlot = tailSlot;
        tailSlot = slotAfter(tailSlot);
    }

    private int slotAfter(int slot) {
        return (slot + 1) % windowLengthInSlots;
    }
}
 

IntermediateRankingsBolt

這個bolt作用就是對於中間結果的排序, 為什么要增加這步, 應為數據量比較大, 如果直接全放到一個節點上排序, 會負載太重
所以先通過IntermediateRankingsBolt, 過濾掉一些
這里仍然使用, 對於obj進行fieldsGrouping, 保證對於同一個obj, 不同時間段emit的統計數據會被發送到同一個task

IntermediateRankingsBolt繼承自AbstractRankerBolt(參考下面)
並實現了updateRankingsWithTuple,

void updateRankingsWithTuple(Tuple tuple) {
    Rankable rankable = RankableObjectWithFields.from(tuple);
    super.getRankings().updateWith(rankable);
}
邏輯很簡單, 將Tuple轉化Rankable, 並更新Rankings列表
參考AbstractRankerBolt, 該bolt會定時將Ranking列表emit出去

Rankable

Rankable除了繼承Comparable接口, 還增加getObject()和getCount()接口

public interface Rankable extends Comparable<Rankable> {
    Object getObject();
    long getCount();
}

RankableObjectWithFields

RankableObjectWithFields實現Rankable接口
1. 提供將Tuple轉化為RankableObject
Tuple由若干field組成, 第一個field作為obj, 第二個field作為count, 其余的都放到List<Object> otherFields中

2. 實現Rankable定義的getObject()和getCount()接口

3. 實現Comparable接口, 包含compareTo, equals

public class RankableObjectWithFields implements Rankable
public static RankableObjectWithFields from(Tuple tuple) {
    List<Object> otherFields = Lists.newArrayList(tuple.getValues());
    Object obj = otherFields.remove(0);
    Long count = (Long) otherFields.remove(0);
    return new RankableObjectWithFields(obj, count, otherFields.toArray());
}

Rankings

Rankings維護需要排序的List, 並提供對List相應的操作

核心的數據結構如下, 用來存儲rankable對象的list
List<Rankable> rankedItems = Lists.newArrayList();

提供一些簡單的操作, 比如設置maxsize(list size), getRankings(返回rankedItems, 排序列表)

核心的操作是,

public void updateWith(Rankable r) {
    addOrReplace(r);
    rerank();
    shrinkRankingsIfNeeded();
}
上一級的blot會定期的發送某個時間窗口的(obj, count), 所以obj之間的排序是在不斷變化的
1. 替換已有的, 或新增rankable對象(包含obj, count)
2. 從新排序(Collections.sort)
3. 由於只需要topN, 所以大於maxsize的需要刪除

AbstractRankerBolt

首先以TopN為參數, 創建Rankings對象

private final Rankings rankings;
public AbstractRankerBolt(int topN, int emitFrequencyInSeconds) {
    count = topN;
    this.emitFrequencyInSeconds = emitFrequencyInSeconds;
    rankings = new Rankings(count);
}

在execute中, 也是定時觸發emit, 同樣是通過emitFrequencyInSeconds來配置tickTuple
一般情況, 只是使用updateRankingsWithTuple不斷更新Rankings
這里updateRankingsWithTuple是abstract函數, 需要子類重寫具體的update邏輯

public final void execute(Tuple tuple, BasicOutputCollector collector) {
    if (TupleHelpers.isTickTuple(tuple)) {
        emitRankings(collector);
    }
    else {
        updateRankingsWithTuple(tuple);
    }
}
最終將整個rankings列表emit出去
private void emitRankings(BasicOutputCollector collector) {
    collector.emit(new Values(rankings));
    getLogger().info("Rankings: " + rankings);
}

TotalRankingsBolt

該bolt會使用globalGrouping, 意味着所有的數據都會被發送到同一個task進行最終的排序.
TotalRankingsBolt同樣繼承自AbstractRankerBolt

void updateRankingsWithTuple(Tuple tuple) {
    Rankings rankingsToBeMerged = (Rankings) tuple.getValue(0);
    super.getRankings().updateWith(rankingsToBeMerged);
}
唯一的不同是, 這里updateWith的參數是個rankable列表, 在Rankings里面的實現一樣, 只是多了遍歷

最終可以得到, 全局的TopN的Rankings列表


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM