內容:
本文主要是參考論文:On optimization methods for deep learning,文章內容主要是筆記SGD(隨機梯度下降),LBFGS(受限的BFGS),CG(共軛梯度法)三種常見優化算法的在deep learning體系中的性能。下面是一些讀完的筆記。
SGD優點:實現簡單,當訓練樣本足夠多時優化速度非常快。
SGD缺點:需要人為調整很多參數,比如學習率,收斂准則等。另外,它是序列的方法,不利於GPU並行或分布式處理。
各種deep learning中常見方法(比如說Autoencoder,RBM,DBN,ICA,Sparse coding)的區別是:目標函數形式不同。這其實才是最本質的區別,由於目標函數的不同導致了對其優化的方法也可能會不同,比如說RBM中目標函數跟網絡能量有關,采用CD優化的,而Autoencoder目標函數為理論輸出和實際輸出的MSE,由於此時的目標函數的偏導可以直接被計算,所以可以用LBFGS,CG等方法優化,其它的類似。所以不能單從網絡的結構來判斷其屬於Deep learning中的哪種方法,比如說我單獨給定64-100的2層網絡,你就無法知道它屬於deep learning中的哪一種方法,因為這個網絡既可以用RBM也可以用Autoencoder來訓練。
作者通過實驗得出的結論是:不同的優化算法有不同的優缺點,適合不同的場合,比如LBFGS算法在參數的維度比較低(一般指小於10000維)時的效果要比SGD(隨機梯度下降)和CG(共軛梯度下降)效果好,特別是帶有convolution的模型。而針對高維的參數問題,CG的效果要比另2種好。也就是說一般情況下,SGD的效果要差一些,這種情況在使用GPU加速時情況一樣,即在GPU上使用LBFGS和CG時,優化速度明顯加快,而SGD算法優化速度提高很小。在單核處理器上,LBFGS的優勢主要是利用參數之間的2階近視特性來加速優化,而CG則得得益於參數之間的共軛信息,需要計算器Hessian矩陣。
不過當使用一個大的minibatch且采用線搜索的話,SGD的優化性能也會提高。
在單核上比較SGD,LBFGS,CG三種算法的優化性能,當針對Autoencoder模型。結果如下:
可以看出,SGD效果最差。
同樣的情況下,訓練的是Sparse autoencoder模型的比較情況如下:
這時SGD的效果更差。這主要原因是LBFGS和CG能夠使用大的minibatch數據來估算每個節點的期望激發值,這個值是可以用來約束該節點的稀疏特性的,而SGD需要去估計噪聲信息。
當然了作者還有在GUP,convolution上也做了不少實驗。
最后,作者訓練了一個2隱含層(這2層不算pooling層)的Sparse autocoder網絡,並應用於MNIST上,其識別率結果如下:
作者網站上給出了一些code,見deep autoencoder with L-BFGS。看着標題本以為code會實現deep convolution autoencoder pre-training和fine-tuning的,因為作者paper里面用的是convolution,閱讀完code后發現其實現就是一個普通二層的autoencoder。看來還是得到前面博文第二個問題的答案:Deep learning:三十六(關於構建深度卷積SAE網絡的一點困惑)。
下面是作者code主要部分的一些注釋:
optimizeAutoencoderLBFGS.m(實現deep autoencoder網絡的參數優化過程):
function [] = optimizeAutoencoderLBFGS(layersizes, datasetpath, ... finalObjective) % train a deep autoencoder with variable hidden sizes % layersizes : the sizes of the hidden layers. For istance, specifying layersizes = % [200 100] will create a network looks like input -> 200 -> 100 -> 200 % -> output (same size as input). Notice the mirroring structure of the % autoencoders. Default layersizes = [2*3072 100] % datasetpath: the path to the CIFAR dataset (where we find the *.mat % files). see loadData.m % finalObjective: the final objective that you use to compare to % terminate your optimization. To qualify, the objective % function on the entire training set must be below this % value. % % Author: Quoc V. Le (quocle@stanford.edu) % %% Handle default parameters if nargin < 3 || isempty(finalObjective) finalObjective = 70; % i am just making this up, the evaluation objective % will be much lower end if nargin < 2 || isempty(datasetpath) datasetpath = '.'; end if nargin < 1 || isempty(layersizes) layersizes = [2*3072 100]; layersizes = [200 100]; end %% Load data loadData %traindata 3072*10000的,每一列表示一個向量 %% Random initialization initializeWeights;%看作者對應該部分的code,也沒有感覺出convolution和pooling的影響啊,怎么它就連接起來了呢 %% Optimization: minibatch L-BFGS % Q.V. Le, J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, A.Y. Ng. % On optimization methods for deep learning. ICML, 2011 addpath minFunc/ options.Method = 'lbfgs'; options.maxIter = 20; options.display = 'on'; options.TolX = 1e-3; perm = randperm(size(traindata,2)); traindata = traindata(:,perm);% 將訓練樣本隨機排列 batchSize = 1000;%因為總共樣本數為10000個,所以分成了10個批次 maxIter = 20; for i=1:maxIter startIndex = mod((i-1) * batchSize, size(traindata,2)) + 1; fprintf('startIndex = %d, endIndex = %d\n', startIndex, startIndex + batchSize-1); data = traindata(:, startIndex:startIndex + batchSize-1); [theta, obj] = minFunc( @deepAutoencoder, theta, options, layersizes, ... data); if obj <= finalObjective % use the minibatch obj as a heuristic for stopping % because checking the entire dataset is very % expensive % yes, we should check the objective for the entire training set trainError = deepAutoencoder(theta, layersizes, traindata); if trainError <= finalObjective % now your submission is qualified break end end end %% write to text files so that we can test your program writeToTextFiles;
deepAutoencoder.m:(深度網絡代價函數及其導數的求解函數):
function [cost,grad] = deepAutoencoder(theta, layersizes, data) % cost and gradient of a deep autoencoder % layersizes is a vector of sizes of hidden layers, e.g., % layersizes[2] is the size of layer 2 % this does not count the visible layer % data is the input data, each column is an example % the activation function of the last layer is linear, the activation % function of intermediate layers is the hyperbolic tangent function % WARNING: the code is optimized for ease of implemtation and % understanding, not speed nor space %% FORCING THETA TO BE IN MATRIX FORMAT FOR EASE OF UNDERSTANDING % Note that this is not optimized for space, one can just retrieve W and b % on the fly during forward prop and backprop. But i do it here so that the % readers can understand what's going on layersizes = [size(data,1) layersizes]; l = length(layersizes); lnew = 0; for i=1:l-1 lold = lnew + 1; lnew = lnew + layersizes(i) * layersizes(i+1); W{i} = reshape(theta(lold:lnew), layersizes(i+1), layersizes(i)); lold = lnew + 1; lnew = lnew + layersizes(i+1); b{i} = theta(lold:lnew); end % handle tied-weight stuff j = 1; for i=l:2*(l-1) lold = lnew + 1; lnew = lnew + layersizes(l-j); W{i} = W{l - j}'; %直接用encoder中對應的轉置即可 b{i} = theta(lold:lnew); j = j + 1; end assert(lnew == length(theta), 'Error: dimensions of theta and layersizes do not match\n') %% FORWARD PROP for i=1:2*(l-1)-1 if i==1 [h{i} dh{i}] = tanhAct(bsxfun(@plus, W{i}*data, b{i})); else [h{i} dh{i}] = tanhAct(bsxfun(@plus, W{i}*h{i-1}, b{i})); end end h{i+1} = linearAct(bsxfun(@plus, W{i+1}*h{i}, b{i+1})); %% COMPUTE COST diff = h{i+1} - data; M = size(data,2); cost = 1/M * 0.5 * sum(diff(:).^2);% 純粹標准的autoencoder,不加其它比如sparse限制 %% BACKPROP if nargout > 1 outderv = 1/M * diff; for i=2*(l-1):-1:2 Wgrad{i} = outderv * h{i-1}'; bgrad{i} = sum(outderv,2); outderv = (W{i}' * outderv) .* dh{i-1}; end Wgrad{1} = outderv * data'; bgrad{1} = sum(outderv,2); % handle tied-weight stuff j = 1; for i=l:2*(l-1) Wgrad{l-j} = Wgrad{l-j} + Wgrad{i}'; j = j + 1; end % dump the results to the grad vector grad = zeros(size(theta)); lnew = 0; for i=1:l-1 lold = lnew + 1; lnew = lnew + layersizes(i) * layersizes(i+1); grad(lold:lnew) = Wgrad{i}(:); lold = lnew + 1; lnew = lnew + layersizes(i+1); grad(lold:lnew) = bgrad{i}(:); end j = 1; for i=l:2*(l-1) lold = lnew + 1; lnew = lnew + layersizes(l-j); grad(lold:lnew) = bgrad{i}(:); j = j + 1; end end end %% USEFUL ACTIVATION FUNCTIONS function [a da] = sigmoidAct(x) a = 1 ./ (1 + exp(-x)); if nargout > 1 da = a .* (1-a); end end function [a da] = tanhAct(x) a = tanh(x); if nargout > 1 da = (1-a) .* (1+a); end end function [a da] = linearAct(x) a = x; if nargout > 1 da = ones(size(a)); end end
initializeWeights.m(參數初始化賦值,雖然是隨機,但是有一定要求):
%% Random initialization % X. Glorot, Y. Bengio. % Understanding the dif鏗乧ulty of training deep feedforward neural networks. % AISTATS 2010. % QVL: this initialization method appears to perform better than % theta = randn(d,1); s0 = size(traindata,1);% s0涓烘牱鏈殑緇存暟 layersizes = [s0 layersizes];%輸入層-hidden1-hidden2,這里是3072-6144-100 l = length(layersizes);%緗戠粶涓殑灞傛暟錛屼笉鍖呭惈瑙g爜閮ㄥ垎錛屽鏋滄槸2涓殣鍚眰鐨勮瘽錛岃繖閲宭=3 lnew = 0; for i=1:l-1%1到3之間 lold = lnew + 1; lnew = lnew + layersizes(i) * layersizes(i+1); r = sqrt(6) / sqrt(layersizes(i+1)+layersizes(i)); A = rand(layersizes(i+1), layersizes(i))*2*r - r; %reshape(theta(lold:lnew), layersizes(i+1), layersizes(i)); theta(lold:lnew) = A(:); %相當於權值W的賦值 lold = lnew + 1; lnew = lnew + layersizes(i+1); A = zeros(layersizes(i+1),1); theta(lold:lnew) = A(:);%相當於偏置值b的賦值 end %以上是encoder部分 j = 1; for i=l:2*(l-1) %1到4之間,下面開始decoder部分 lold = lnew + 1; lnew = lnew + layersizes(l-j); theta(lold:lnew)= zeros(layersizes(l-j),1); j = j + 1; end theta = theta'; layersizes = layersizes(2:end); %去除輸入層
參考資料:
Le, Q. V., et al. (2011). On optimization methods for deep learning. Proc. of ICML.
Deep learning:三十六(關於構建深度卷積SAE網絡的一點困惑)