在SQL Server中如何比較兩個表的各組數據


開始


 

前一陣子,在項目中碰到這樣一個SQL查詢需求,有兩個相同結構的表(table_left & table_right),如下:

圖1.

檢查表table_left的各組(groupId),是否在表table_right中存在有一組(groupId)數據(data)與它的數據(data)完全相等.

如圖1. 可以看出表table_left和table_right存在兩組數據完整相等:

圖2.

 

分析


 

從上面的兩個表,可以知道它們存放的是一組一組的數據;那么,接下來我借助數學集合的列舉法和運算進行分析。

先通過集合的列舉法描述兩個表的各組數據:

圖3.

這里只有兩種情況,相等和不相等。對於不相等,可再分為部分相等、包含、和完全不相等。使用集合描述,可使用交集,子集,並集。如下面圖4.,我列舉出這幾種常見的情況:

圖4.

 

 

 

實現


 

在數據庫中,要找出表table_left和表table_right存在相同數據的組,方法很多,這里我列出兩種常用的方法。

(下面的SQL腳本,是以圖4.的數據為基礎參考)

方法1:

通過"Select … From …Order by … xml for path('') "把各組的data列數據連串起來(如,圖4.把table_left的組#11的列data連串起來成"data1-data2-data3"),其他分組(包含表table_right)以此方法實現data列數據連串起來;然后通過比較兩表的連串后字段是否存在相等,若是相等就說明這比較多兩組數據相等,由此可以判斷出表table_left的哪組數據在表table_right存在與它數據完全相等的組。

針對方法1,需要對原表增加一個字段dataPath,用於存儲data列數據連串的結果,如:

alter table table_left add dataPath nvarchar(200)

alter table table_right add dataPath nvarchar(200)

分組連串data列數據並update至剛新增的列dataPath,如:

update a

    set dataPath=b.dataPath

    from table_left a

        cross apply(select (select '-'+x.data from table_left x where x.groupId=a.groupId order by x.data for xml path('')) as dataPath)b

 

update a

    set dataPath=b.dataPath

    from table_right a

        cross apply(select (select '-'+x.data from table_right x where x.groupId=a.groupId order by x.data for xml path('')) as dataPath)b

 

接下來就是查詢了,如:

select distinct a.groupId

    from table_left a

    where exists(select 1 from table_right x where x.dataPath=a.dataPath)

完整代碼:

View Code
use tempdb
go
if object_id('table_left') is not null drop table table_left
if object_id('table_right') is not null drop table table_right
go
create table table_left(groupId nvarchar(5),data nvarchar(10))
create table table_right(groupId nvarchar(5),data nvarchar(10))
go
alter table table_left add dataPath nvarchar(200)
alter table table_right add dataPath nvarchar(200)
go
create nonclustered index ix_left on table_left(dataPath)
create nonclustered index ix_right on table_right(dataPath)
go
set nocount on
go
insert into table_right(groupId,data)
select '#1','data1' union all
select '#1','data2' union all
select '#1','data3' union all
select '#2','data55' union all
select '#2','data55' union all
select '#3','data91' union all
select '#3','data92' union all
select '#4','data65' union all
select '#4','data66' union all
select '#4','data67' union all
select '#4','data68' union all
select '#4','data69' union all
select '#5','data77' union all
select '#5','data79'

insert into table_left(groupId,data)
select '#11','data1' union all
select '#11','data2' union all
select '#11','data3' union all
select '#22','data55' union all
select '#22','data57' union all
select '#33','data99' union all
select '#33','data99' union all
select '#44','data66' union all
select '#44','data68' union all
select '#55','data77' union all
select '#55','data78' union all
select '#55','data79'

go
update a 
    set dataPath=b.dataPath
    from table_left a
        cross apply(select (select '-'+x.data from table_left x where x.groupId=a.groupId order by x.data for xml path('')) as dataPath)b

update a 
    set dataPath=b.dataPath
    from table_right a
        cross apply(select (select '-'+x.data from table_right x where x.groupId=a.groupId order by x.data for xml path('')) as dataPath)b

--
select distinct a.groupId
    from table_left a
    where exists(select 1 from table_right x where x.dataPath=a.dataPath)

 

方法2:

通過SQL Sever提供的集運算符"Except",判斷兩組非重復的數據。如果兩組針對對方都不存在非重復的數據,就說明這兩組數據完全相等。如,表table_left中的組#11和表 table_right中的組#1,對列data進行"Except"集運算,無任是(#11 à #1)進行Except集運算,還是(#1 à #11 )進行Except集合運算,都返回空結果,這就說明組#1 和#11的data數據完全相等,如:

select data from table_left where groupId='#11' except select data from table_right where groupId='#1'

 

select data from table_right where groupId='#1' except select data from table_left where groupId='#11'

同樣道理,我們把表table_left中的組#11和表 table_right中的組#2,對列data進行"Except"集運算,如:

select data from table_left where groupId='#11' except select data from table_right where groupId='#2'

 

select data from table_right where groupId='#2' except select data from table_left where groupId='#11'

只要(#11 à #2 )或 (#2 à #11 )的"Except"集運算結果有記錄,就說明兩組的數據不相等。

兩張表的所有組都進行比較,我們需要通過以下SQL腳本實現,如:

select distinct a.groupId

    from table_left a

        inner join table_right b on b.data=a.data

    where not exists(select x.data from table_left x where x.groupId=a.groupId except select y.data from table_right y where y.groupId=b.groupId )

        and not exists(select x.data from table_right x where x.groupId=b.groupId except select y.data from table_left y where y.groupId=a.groupId )

 完整代碼:

View Code
use tempdb
go
if object_id('table_left') is not null drop table table_left
if object_id('table_right') is not null drop table table_right
go
create table table_left(groupId nvarchar(5),data nvarchar(10))
create table table_right(groupId nvarchar(5),data nvarchar(10))
go
create nonclustered index ix_left on table_left(data)
create nonclustered index ix_right on table_right(data)

go
set nocount on
go
insert into table_right(groupId,data)
select '#1','data1' union all
select '#1','data2' union all
select '#1','data3' union all
select '#2','data55' union all
select '#2','data55' union all
select '#3','data91' union all
select '#3','data92' union all
select '#4','data65' union all
select '#4','data66' union all
select '#4','data67' union all
select '#4','data68' union all
select '#4','data69' union all
select '#5','data77' union all
select '#5','data79'

insert into table_left(groupId,data)
select '#11','data1' union all
select '#11','data2' union all
select '#11','data3' union all
select '#22','data55' union all
select '#22','data57' union all
select '#33','data99' union all
select '#33','data99' union all
select '#44','data66' union all
select '#44','data68' union all
select '#55','data77' union all
select '#55','data78' union all
select '#55','data79'

go
--select 

select distinct a.groupId
    from table_left a
        inner join table_right b on b.data=a.data
    where not exists(select x.data from table_left x where x.groupId=a.groupId except select y.data from table_right y where y.groupId=b.groupId )
        and not exists(select x.data from table_right x where x.groupId=b.groupId except select y.data from table_left y where y.groupId=a.groupId )

 

方法1 Vs. 方法2 :

方法1和方法2都能找出表table_left在table_right存在數據完全相等的組#11。但性能角度上,方法2比方法1略勝一籌,可以看它們執行過程的統計信息:

方法1:

圖5.

方法2:

圖6.

如果,數據量大情況下,那么方法2比方法1更具有明顯的優點。因為方法1,多兩個更新dataPath的部分,數據量隨着增加,這里位置的更新就耗很多的資源;如果dataPath列數據大小超過900字節,會導致無法在dataPath創建索引,影響后面的Select查詢性能。

擴展


 

這里說擴展,主要是針對上面的方法2來說。在當列data的數據大小超過900字節,或者含有多個數據列要進行比較,看是否存在兩組(groupId)的各對應列數據一一相等。

圖7.

這樣的情況,可對字段dataSub1 & dataSub2 創建一個哈希索引,如:

alter table table_left add dataChecksum as checksum(dataSub1,dataSub2)

alter table table_right add dataChecksum as checksum(dataSub1,dataSub2)

go

 

create nonclustered index ix_table_left_cs on table_right(dataChecksum)

create nonclustered index table_right_cs on table_right(dataChecksum)

后面的select查詢語句,在Inner Join 部分稍改動下即可,如:

select distinct a.groupId

    from table_left a

        inner join table_right b on b.dataChecksum=a.dataChecksum

            and b.dataSub1=a.dataSub1

            and b.dataSub2=a.dataSub2

    where not exists(select x.dataSub1,x.dataSub2 from table_left x where x.groupId=a.groupId except select y.dataSub1,y.dataSub2 from table_right y where y.groupId=b.groupId )

        and not exists(select x.dataSub1,x.dataSub2 from table_right x where x.groupId=b.groupId except select y.dataSub1,y.dataSub2 from table_left y where y.groupId=a.groupId )

 完整代碼:

View Code
use tempdb
go
if object_id('table_left') is not null drop table table_left
if object_id('table_right') is not null drop table table_right
go
create table table_left(groupId nvarchar(5),dataSub1 nvarchar(10),dataSub2 nvarchar(10))
create table table_right(groupId nvarchar(5),dataSub1 nvarchar(10),dataSub2 nvarchar(10))
go


alter table table_left add dataChecksum as checksum(dataSub1,dataSub2)
alter table table_right add dataChecksum as checksum(dataSub1,dataSub2)
go

create nonclustered index ix_table_left_cs on table_left(dataChecksum)
create nonclustered index table_right_cs on table_right(dataChecksum)


go
set nocount on
go
insert into table_right(groupId,dataSub1,dataSub2)
select '#1','data1','data7' union all
select '#1','data2','data8' union all
select '#1','data3','data9' union all
select '#2','data55','data4' union all
select '#2','data55','data5' 


insert into table_left(groupId,dataSub1,dataSub2)
select '#11','data1','data7' union all
select '#11','data2','data8' union all
select '#11','data3','data9' union all
select '#22','data55','data0' union all
select '#22','data57','data2' union all
select '#33','data99','data4' union all
select '#33','data99','data6' 


go
--select 

select distinct a.groupId
    from table_left a
        inner join table_right b on b.dataChecksum=a.dataChecksum
            and b.dataSub1=a.dataSub1
            and b.dataSub2=a.dataSub2
    where not exists(select x.dataSub1,x.dataSub2 from table_left x where x.groupId=a.groupId except select y.dataSub1,y.dataSub2 from table_right y where y.groupId=b.groupId )
        and not exists(select x.dataSub1,x.dataSub2 from table_right x where x.groupId=b.groupId except select y.dataSub1,y.dataSub2 from table_left y where y.groupId=a.groupId )

 

 

小結


 

對於這個問題,可能還有其他的或更優的解決方法.而且在實際的生產環境中,可能碰到的情況會有所不同,無論如何,需要多分析,多動手多實驗,找到最優的解決方法。

 

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM