本文針對arm linux, 從kernel的第一條指令開始分析,一直分析到進入start_kernel()函數.
我們當前以linux-2.6.19內核版本作為范例來分析,本文中所有的代碼,前面都會加上行號以便於和源碼進行對照, 例: 在文件init/main.c中:
00478: asmlinkage void __init start_kernel(void)
前面的"00478:" 表示478行,冒號后面的內容就是源碼了. 在分析代碼的過程中,我們使用縮進來表示各個代碼的調用層次.
由於啟動部分有一些代碼是平台特定的,雖然大部分的平台所實現的功能都比較類似,但是為了更好的對code進行說明,對於平台相關的代碼,我們選擇at91(ARM926EJS)平台進行分析.
另外,本文是以uncompressed kernel開始講解的.對於內核解壓縮部分的code,在 arch/arm/boot/compressed中,本文不做討論.
1. 啟動條件
通常從系統上電執行的boot loader的代碼, 而要從boot loader跳轉到linux kernel的第一條指令處執行需要一些特定的條件。
這里討論下進入到linux kernel時必須具備的一些條件,這一般是boot loader在跳轉到kernel之前要完成的:
- CPU必須處於SVC(supervisor)模式,並且IRQ和FIQ中斷都是禁止的;
- MMU(內存管理單元)必須是關閉的, 此時虛擬地址就是物理地址;
- 數據cache(Data cache)必須是關閉的
- 指令cache(Instruction cache)可以是打開的,也可以是關閉的,這個沒有強制要求;
- CPU 通用寄存器0 (r0)必須是 0;
- CPU 通用寄存器1 (r1)必須是 ARM Linux machine type (關於machine type, 我們后面會有講解)
- CPU 通用寄存器2 (r2) 必須是 kernel parameter list 的物理地址(parameter list 是由boot loader傳遞給kernel,用來描述設備信息屬性的列表)。
更詳細的關於啟動arm linux之前要做哪些准備工作可以參考,“Booting ARM Linux"文檔
2. starting kernel
首先,我們先對幾個重要的宏進行說明(我們針對有MMU的情況):
宏 |
位置 |
默認值 |
說明 |
KERNEL_RAM_ADDR |
arch/arm/kernel/head.S +26 |
0xc0008000 |
kernel在RAM中的虛擬地址 |
PAGE_OFFSET |
include/asm-arm/memeory.h +50 |
0xc0000000 |
內核空間的起始虛擬地址 |
TEXT_OFFSET |
arch/arm/Makefile +131 |
0x00008000 |
內核在RAM中起始位置相對於 RAM起始地址的偏移 |
TEXTADDR |
arch/arm/kernel/head.S +49 |
0xc0008000 |
kernel的起始虛擬地址 <!--[if !supportLineBreakNewLine]--> <!--[endif]--> |
PHYS_OFFSET |
include/asm-arm/arch- *** /memory.h |
平台相關 |
RAM的起始物理地址,對於s3c2410來說在include/asm-arm/arch-s3c2410/memory.h下定義,值為0x30000000(ram接在片選6上) |
內核的入口是stext,這是在arch/arm/kernel/vmlinux.lds.S中定義的
00011: ENTRY(stext)
對於vmlinux.lds.S,這是ld script文件,此文件的格式和匯編及C程序都不同,本文不對ld script作過多的介紹,只對內核中用到的內容進行講解,關於ld的詳細內容可以參考ld.info
這里的ENTRY(stext) 表示程序的入口是在符號stext. 而符號stext是在arch/arm/kernel/head.S中定義的:
下面我們將arm linux boot的主要代碼列出來進行一個概括的介紹,然后,我們會逐個的進行詳細的講解.
在arch/arm/kernel/head.S中 72 - 94 行,是arm linux boot的主代碼:
00072: ENTRY(stext) 00073: msr cpsr_c, #PSR_F_BIT | PSR_I_BIT | SVC_MODE @ ensure svc mode 00074: @ and irqs disabled 00075: mrc p15, 0, r9, c0, c0 @ get processor id 00076: bl __lookup_processor_type @ r5=procinfo r9=cpuid 00077: movs r10, r5 @ invalid processor (r5=0)? 00078: beq __error_p @ yes, error 'p' 00079: bl __lookup_machine_type @ r5=machinfo 00080: movs r8, r5 @ invalid machine (r5=0)? 00081: beq __error_a @ yes, error 'a' 00082: bl __create_page_tables 00083: 00084: /* 00085: * The following calls CPU specific code in a position independent 00086: * manner. See arch/arm/mm/proc-*.S for details. r10 = base of 00087: * xxx_proc_info structure selected by __lookup_machine_type 00088: * above. On return, the CPU will be ready for the MMU to be 00089: * turned on, and r0 will hold the CPU control register value. 00090: */ 00091: ldr r13, __switch_data @ address to jump to after 00092: @ mmu has been enabled 00093: adr lr, __enable_mmu @ return (PIC) address 00094: add pc, r10, #PROCINFO_INITFUNC
其中,73行是確保kernel運行在SVC模式下,並且IRQ和FIRQ中斷已經關閉,這樣做是很謹慎的.
arm linux boot的主線可以概括為以下幾個步驟:
- 確定 processor type (75 - 78行)
- 確定 machine type (79 - 81行)
- 創建頁表 (82行)
- 調用平台特定的__cpu_flush函數 (在struct proc_info_list中) (94 行)
- 開啟mmu (93行)
- 切換數據 (91行)
最終跳轉到start_kernel(在__switch_data的結束的時候,調用了 b start_kernel)
下面,我們按照這個主線,逐步的分析Code.
2.1 確定processor type
arch/arm/kernel/head.S中:
00075: mrc p15, 0, r9, c0, c0 @ get processor id 00076: bl __lookup_processor_type @ r5=procinfo r9=cpuid 00077: movs r10, r5 @ invalid processor (r5=0)? 00078: beq __error_p @ yes, error 'p'
75行: 通過cp15協處理器的c0寄存器來獲得processor id的指令. 關於cp15的詳細內容可參考相關的arm手冊,也可直接參考s3c2410的data sheet。
76行: 跳轉到__lookup_processor_type.在__lookup_processor_type中,會把找到匹配的processor type 對象存儲在r5中。
77,78行: 判斷r5中的processor type是否是0,如果是0,說明系統中沒找到匹配當前processor type的對象, 則跳轉到__error_p(出錯)。系統中會預先定義本系統支持的processor type 對象集。
__lookup_processor_type 函數主要是根據從cpu中獲得的processor id和系統中預先定義的本系統能支持的proc_info集進行匹配,看系統能否支持當前的processor, 並將匹配到的proc_info的基地址存到r5中, 0表示沒有找到對應的processor type.
下面我們分析__lookup_processor_type函數,arch/arm/kernel/head-common.S中:
00145: .type __lookup_processor_type, %function 00146: __lookup_processor_type: 00147: adr r3, 3f 00148: ldmda r3, {r5 - r7} 00149: sub r3, r3, r7 @ get offset between virt&phys 00150: add r5, r5, r3 @ convert virt addresses to 00151: add r6, r6, r3 @ physical address space 00152:1: ldmia r5, {r3, r4} @ value, mask 00153: and r4, r4, r9 @ mask wanted bits 00154: teq r3, r4 00155: beq 2f 00156: add r5, r5, #PROC_INFO_SZ @ sizeof(proc_info_list) 00157: cmp r5, r6 00158: blo 1b 00159: mov r5, #0 @ unknown processor 00160:2: mov pc, lr 00161: 00162: /* 00163: * This provides a C-API version of the above function. 00164: */ 00165:ENTRY(lookup_processor_type) 00166: stmfd sp!, {r4 - r7, r9, lr} 00167: mov r9, r0 00168: bl __lookup_processor_type 00169: mov r0, r5 00170: ldmfd sp!, {r4 - r7, r9, pc} 00171: 00172: /* 00173: * Look in include/asm-arm/procinfo.h and arch/arm/kernel/arch.[ch] for 00174: * more information about the __proc_info and __arch_info structures. 00175: */ 00176: .long __proc_info_begin 00177: .long __proc_info_end 00178:3: .long . 00179: .long __arch_info_begin 00180: .long __arch_info_end
145, 146行是函數定義
147行: 取地址指令,這里的3f是向前symbol名稱是3的位置,即第178行,將該地址存入r3.
這里需要注意的是,adr指令取址,獲得的是基於pc的一個地址,要格外注意,這個地址是3f處的"運行時地址",由於此時MMU還沒有打開,也可以理解成物理地址(實地址).(詳細內容可參考arm指令手冊)
148行: 因為r3中的地址是178行的位置的地址,因而執行完后:
- r5存的是176行符號 __proc_info_begin的地址;
- r6存的是177行符號 __proc_info_end的地址;
- r7存的是3f處的地址.
這里需要注意鏈接地址和運行時地址的區別. r3存儲的是運行時地址(物理地址),而r7中存儲的是鏈接地址(虛擬地址).
__proc_info_begin和__proc_info_end是在arch/arm/kernel/vmlinux.lds.S中:
00031: __proc_info_begin = .; 00032: *(.proc.info.init) 00033: __proc_info_end = .;
這里是聲明了兩個變量:__proc_info_begin 和 __proc_info_end,其中等號后面的"."是location counter(詳細內容請參考ld.info)
這三行的意思是: __proc_info_begin 的位置上,放置所有文件中的 ".proc.info.init" 段的內容,然后緊接着是 __proc_info_end 的位置.
kernel 使用struct proc_info_list來描述processor type.在 include/asm-arm/procinfo.h 中:
00029: struct proc_info_list { 00030: unsigned int cpu_val; 00031: unsigned int cpu_mask; 00032: unsigned long __cpu_mm_mmu_flags; /* used by head.S */ 00033: unsigned long __cpu_io_mmu_flags; /* used by head.S */ 00034: unsigned long __cpu_flush; /* used by head.S */ 00035: const char *arch_name; 00036: const char *elf_name; 00037: unsigned int elf_hwcap; 00038: const char *cpu_name; 00039: struct processor *proc; 00040: struct cpu_tlb_fns *tlb; 00041: struct cpu_user_fns *user; 00042: struct cpu_cache_fns *cache; 00043: };
我們當前以at91為例,其processor是926的.在arch/arm/mm/proc-arm926.S 中:
00464: .section ".proc.info.init", #alloc, #execinstr 00465: 00466: .type __arm926_proc_info,#object 00467: __arm926_proc_info: 00468: .long 0x41069260 @ ARM926EJ-S (v5TEJ) 00469: .long 0xff0ffff0 00470: .long PMD_TYPE_SECT | \ 00471: PMD_SECT_BUFFERABLE | \ 00472: PMD_SECT_CACHEABLE | \ 00473: PMD_BIT4 | \ 00474: PMD_SECT_AP_WRITE | \ 00475: PMD_SECT_AP_READ 00476: .long PMD_TYPE_SECT | \ 00477: PMD_BIT4 | \ 00478: PMD_SECT_AP_WRITE | \ 00479: PMD_SECT_AP_READ 00480: b __arm926_setup 00481: .long cpu_arch_name 00482: .long cpu_elf_name 00483: .long HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_VFP|HWCAP_EDSP|HWCAP_JAVA 00484: .long cpu_arm926_name 00485: .long arm926_processor_functions 00486: .long v4wbi_tlb_fns 00487: .long v4wb_user_fns 00488: .long arm926_cache_fns 00489: .size __arm926_proc_info, . - __arm926_proc_info
從464行,我們可以看到 __arm926_proc_info 被放到了".proc.info.init"段中.
對照struct proc_info_list,我們可以看到 __cpu_flush的定義是在480行,即__arm926_setup.(我們將在"4. 調用平台特定的__cpu_flush函數"一節中詳細分析這部分的內容.)
從以上的內容我們可以看出: r5中的__proc_info_begin是proc_info_list的起始地址, r6中的__proc_info_end是proc_info_list的結束地址.
149行: 從上面的分析我們可以知道r3中存儲的是3f處的物理地址,而r7存儲的是3f處的虛擬地址,這一行是計算當前程序運行的物理地址和虛擬地址的差值,將其保存到r3中.
150行: 將r5存儲的虛擬地址(__proc_info_begin)轉換成物理地址
151行: 將r6存儲的虛擬地址(__proc_info_end)轉換成物理地址
152行: 對照struct proc_info_list,可以得知,這句是將當前proc_info的cpu_val和cpu_mask分別存r3, r4中
153行: r9中存儲了processor id(arch/arm/kernel/head.S中的75行),與r4的cpu_mask進行邏輯與操作,得到我們需要的值
154行: 將153行中得到的值與r3中的cpu_val進行比較
155行: 如果相等,說明我們找到了對應的processor type,跳到160行,返回
156行: (如果不相等) , 將r5指向下一個proc_info,
157行: 和r6比較,檢查是否到了__proc_info_end.
158行: 如果沒有到__proc_info_end,表明還有proc_info配置,返回152行繼續查找
159行: 執行到這里,說明所有的proc_info都匹配過了,但是沒有找到匹配的,將r5設置成0(unknown processor)
160行: 返回
2.2 確定machine type
arch/arm/kernel/head.S中:
00079: bl __lookup_machine_type @ r5=machinfo 00080: movs r8, r5 @ invalid machine (r5=0)? 00081: beq __error_a @ yes, error 'a'
79行: 跳轉到__lookup_machine_type函數,在__lookup_machine_type中,會把struct machine_desc的基地址(machine type)存儲在r5中
80,81行: 將r5中的 machine_desc的基地址存儲到r8中,並判斷r5是否是0,如果是0,說明是無效的machine type,跳轉到__error_a(出錯)
__lookup_machine_type 函數,下面我們分析__lookup_machine_type 函數,arch/arm/kernel/head-common.S中:
00176: .long __proc_info_begin 00177: .long __proc_info_end 00178:3: .long . 00179: .long __arch_info_begin 00180: .long __arch_info_end 00181: 00182:/* 00183: * Lookup machine architecture in the linker-build list of architectures. 00184: * Note that we can't use the absolute addresses for the __arch_info 00185: * lists since we aren't running with the MMU on (and therefore, we are 00186: * not in the correct address space). We have to calculate the offset. 00187: * 00188: * r1 = machine architecture number 00189: * Returns: 00190: * r3, r4, r6 corrupted 00191: * r5 = mach_info pointer in physical address space 00192: */ 00193: .type __lookup_machine_type, %function 00194:__lookup_machine_type: 00195: adr r3, 3b 00196: ldmia r3, {r4, r5, r6} 00197: sub r3, r3, r4 @ get offset between virt&phys 00198: add r5, r5, r3 @ convert virt addresses to 00199: add r6, r6, r3 @ physical address space 00200:1: ldr r3, [r5, #MACHINFO_TYPE] @ get machine type 00201: teq r3, r1 @ matches loader number? 00202: beq 2f @ found 00203: add r5, r5, #SIZEOF_MACHINE_DESC @ next machine_desc 00204: cmp r5, r6 00205: blo 1b 00206: mov r5, #0 @ unknown machine 00207:2: mov pc, lr
193, 194行: 函數聲明
195行: 取地址指令,這里的3b是向后symbol名稱是3的位置,即第178行,將該地址存入r3.
和上面我們對__lookup_processor_type 函數的分析相同,r3中存放的是3b處物理地址.
196行: r3是3b處的地址,因而執行完后:
- r4存的是 3b處的地址
- r5存的是__arch_info_begin 的地址
- r6存的是__arch_info_end 的地址
__arch_info_begin 和 __arch_info_end是在 arch/arm/kernel/vmlinux.lds.S中:
00034: __arch_info_begin = .; 00035: *(.arch.info.init) 00036: __arch_info_end = .;
這里是聲明了兩個變量:__arch_info_begin 和 __arch_info_end,其中等號后面的"."是location counter(詳細內容請參考ld.info)
這三行的意思是: __arch_info_begin 的位置上,放置所有文件中的 ".arch.info.init" 段的內容,然后緊接着是 __arch_info_end 的位置.
kernel 使用struct machine_desc 來描述 machine type. 在 include/asm-arm/mach/arch.h 中:
00017:struct machine_desc { 00018: /* 00019: * Note! The first four elements are used 00020: * by assembler code in head-armv.S 00021: */ 00022: unsigned int nr; /* architecture number */ 00023: unsigned int phys_io; /* start of physical io */ 00024: unsigned int io_pg_offst; /* byte offset for io 00025: * page tabe entry */ 00026: 00027: const char *name; /* architecture name */ 00028: unsigned long boot_params; /* tagged list */ 00029: 00030: unsigned int video_start; /* start of video RAM */ 00031: unsigned int video_end; /* end of video RAM */ 00032: 00033: unsigned int reserve_lp0 :1; /* never has lp0 */ 00034: unsigned int reserve_lp1 :1; /* never has lp1 */ 00035: unsigned int reserve_lp2 :1; /* never has lp2 */ 00036: unsigned int soft_reboot :1; /* soft reboot */ 00037: void (*fixup)(struct machine_desc *, 00038: struct tag *, char **, 00039: struct meminfo *); 00040: void (*map_io)(void);/* IO mapping function */ 00041: void (*init_irq)(void); 00042: struct sys_timer *timer; /* system tick timer */ 00043: void (*init_machine)(void); 00044:}; 00045: 00046:/* 00047: * Set of macros to define architecture features. This is built into 00048: * a table by the linker. 00049: */ 00050:#define MACHINE_START(_type,_name) \ 00051:static const struct machine_desc __mach_desc_##_type \ 00052: __attribute_used__ \ 00053: __attribute__((__section__(".arch.info.init"))) = { \ 00054: .nr = MACH_TYPE_##_type, \ 00055: .name = _name, 00056: 00057:#define MACHINE_END \ 00058:};
內核中,一般使用宏MACHINE_START來定義machine type. 對於at91, 在 arch/arm/mach-at91rm9200/board-ek.c 中:
00137:MACHINE_START(AT91RM9200EK, "Atmel AT91RM9200-EK") 00138: /* Maintainer: SAN People/Atmel */ 00139: .phys_io = AT91_BASE_SYS, 00140: .io_pg_offst = (AT91_VA_BASE_SYS >> 18) & 0xfffc, 00141: .boot_params = AT91_SDRAM_BASE + 0x100, 00142: .timer = &at91rm9200_timer, 00143: .map_io = ek_map_io, 00144: .init_irq = ek_init_irq, 00145: .init_machine = ek_board_init, 00146:MACHINE_END
197行: r3中存儲的是3b處的物理地址,而r4中存儲的是3b處的虛擬地址,這里計算處物理地址和虛擬地址的差值,保存到r3中
198行: 將r5存儲的虛擬地址(__arch_info_begin)轉換成物理地址
199行: 將r6存儲的虛擬地址(__arch_info_end)轉換成物理地址
200行: MACHINFO_TYPE 在 arch/arm/kernel/asm-offset.c 101行定義, 這里是取 struct machine_desc中的nr(architecture number) 到r3中
201行: 將r3中取到的machine type 和 r1中的 machine type(見前面的"啟動條件")進行比較
202行: 如果相同,說明找到了對應的machine type,跳轉到207行的2f處,此時r5中存儲了對應的struct machine_desc的基地址
203行: (不相同), 取下一個machine_desc的地址
204行: 和r6進行比較,檢查是否到了__arch_info_end.
205行: 如果不相同,說明還有machine_desc,返回200行繼續查找.
206行: 執行到這里,說明所有的machind_desc都查找完了,並且沒有找到匹配的, 將r5設置成0(unknown machine).
207行: 返回
2.3 創建頁表
繼續分析head.S,確定了processor type和 machine type之后,就是創建頁表.
通過前面的兩步,我們已經確定了processor type 和 machine type. 此時,一些特定寄存器的值如下所示:
- r8 = machine info (struct machine_desc的基地址)
- r9 = cpu id (通過cp15協處理器獲得的cpu id)
- r10 = procinfo (struct proc_info_list的基地址)
創建頁表是通過函數 __create_page_tables 來實現的.
這里,我們使用的是arm的L1主頁表,L1主頁表也稱為段頁表(section page table) , L1 主頁表將4 GB 的地址空間分成若干個1 MB的段(section),因此L1頁表包含4096個頁表項(section entry). 每個頁表項是32 bits(4 bytes) ,因而L1主頁表占用 4096 *4 = 16k的內存空間.
對於ARM926,其L1 section entry的格式如下圖,可參考arm926EJS TRM:
下面我們來分析 __create_page_tables 函數,在 arch/arm/kernel/head.S 中:
00206: .type __create_page_tables, %function 00207:__create_page_tables: 00208: pgtbl r4 @ page table address 00209: 00210:/* 00211: * Clear the 16K level 1 swapper page table 00212: */ 00213: mov r0, r4 00214: mov r3, #0 00215: add r6, r0, #0x4000 00216:1: str r3, [r0], #4 00217: str r3, [r0], #4 00218: str r3, [r0], #4 00219: str r3, [r0], #4 00220: teq r0, r6 00221: bne 1b 00222: 00223: ldr r7, [r10, #PROCINFO_MM_MMUFLAGS] @ mm_mmuflags 00224: 00225:/* 00226: * Create identity mapping for first MB of kernel to 00227: * cater for the MMU enable. This identity mapping 00228: * will be removed by paging_init(). We use our current program 00229: * counter to determine corresponding section base address. 00230: */ 00231: mov r6, pc, lsr #20 @/*內核所在內存段開始地址(物理地址)在頁表中的索引號(當前地址的前12位)->r6*/
00232: orr r3, r7, r6, lsl #20 @ flags + kernel base 00233: str r3, [r4, r6, lsl #2] @ identity mapping 00234: 00235:/* 00236: * Now setup the pagetables for our kernel direct 00237: * mapped region. 00238: */ 00239: add r0, r4, #(TEXTADDR & 0xff000000) >> 18 @/*內核入口處的虛擬地址所處的段開始地址對齊到16字節邊界處(為內核區域分配了4個表項),右移20位得到對應的地址在頁表中的索引號,
*每個表項占4個字位,左移2位(索引號x4)即共右移18位,得到表項距頁表開始地址(r4)的總字節數,和r4相加就是這個頁表項的物理地址.這個地址存入r0中.*/
00240: str r3, [r0, #(TEXTADDR & 0x00f00000) >> 18]! @/*前面r3的描述符內容存入內核入口地址對應的表項(這里就是4個表項的第一個表項.因為TEXTADDR=0XC00--)*/
00241: 00242: ldr r6, =(_end - PAGE_OFFSET - 1) @ r6 = number of sections 00243: mov r6, r6, lsr #20 @ needed for kernel minus 1 00244: 00245:1: add r3, r3, #1 << 20 00246: str r3, [r0, #4]! 00247: subs r6, r6, #1 00248: bgt 1b 00249: 00250:/* 00251: * Then map first 1MB of ram in case it contains our boot params. 00252: */ 00253: add r0, r4, #PAGE_OFFSET >> 18 00254: orr r6, r7, #PHYS_OFFSET 00255: str r6, [r0] ... 00314: mov pc, lr 00315: .ltorg
206, 207行: 函數聲明
208行: 通過宏 pgtbl 將r4設置成頁表的基地址(物理地址) ,宏pgtbl 在 arch/arm/kernel/head.S 中:
00042:.macro pgtbl, rd 00043:ldr \rd, =(__virt_to_phys(KERNEL_RAM_ADDR - 0x4000)) 00044:.endm
可以看到,頁表是位於 KERNEL_RAM_ADDR 下面 16k 的位置
宏 __virt_to_phys 是在incude/asm-arm/memory.h 中:
00125:#ifndef __virt_to_phys 00126:#define __virt_to_phys(x) ((x) - PAGE_OFFSET + PHYS_OFFSET) 00127:#define __phys_to_virt(x) ((x) - PHYS_OFFSET + PAGE_OFFSET) 00128:#endif
下面從213行 - 221行, 是將這16k 的頁表清0.
213行: r0 = r4, 將頁表基地址存在r0中
214行: 將 r3 置成0
215行: r6 = 頁表基地址 + 16k, 可以看到這是頁表的尾地址
216 - 221 行: 循環,從 r0 到 r6 將這16k頁表用0填充.
223行: 獲得proc_info_list的__cpu_mm_mmu_flags的值,並存儲到 r7中. (宏PROCINFO_MM_MMUFLAGS是在arch/arm/kernel/asm-offset.c中定義)
231行: 通過pc值的高12位(右移20位),得到kernel的section,並存儲到r6中.因為當前是通過運行時地址得到的kernel的section,因而是物理地址.
232行: r3 = r7 | (r6 << 20); flags + kernel base,得到頁表中需要設置的值.
233行: 設置頁表: mem[r4 + r6 * 4] = r3
這里,因為頁表的每一項是32 bits(4 bytes),所以要乘以4(<<2).
上面這三行,設置了kernel的第一個section(物理地址所在的page entry)的頁表項
239, 240行: TEXTADDR是內核的起始虛擬地址(0xc0008000), 這兩行是設置kernel起始虛擬地址的頁表項(注意,這里設置的頁表項和上面的231 - 233行設置的頁表項是不同的 )
執行完后,r0指向kernel的第2個section的虛擬地址所在的頁表項.
242行: 這一行計算kernel鏡像的大小(bytes).
_end 是在vmlinux.lds.S中162行定義的,標記kernel的結束位置(虛擬地址):
00158.bss : { 00159 __bss_start = .; /* BSS */ 00160 *(.bss) 00161 *(COMMON) 00162 _end = .; 00163}
kernel的size = _end - PAGE_OFFSET -1, 這里 減1的原因是因為 _end 是 location counter,它的地址是kernel鏡像后面的一個byte的地址.
243行: 地址右移20位,計算出kernel有多少sections,並將結果存到r6中
245 - 248行: 這幾行用來填充kernel所有section虛擬地址對應的頁表項.
253行: 將r0設置為RAM第一兆虛擬地址的頁表項地址(page entry)
254行: r7中存儲的是mmu flags, 邏輯或上RAM的起始物理地址,得到RAM第一個MB頁表項的值.
255行: 設置RAM的第一個MB虛擬地址的頁表.
上面這三行是用來設置RAM中第一兆虛擬地址的頁表. 之所以要設置這個頁表項的原因是RAM的第一兆內存中可能存儲着boot params.
這樣,kernel所需要的基本的頁表我們都設置完了, 如下圖所示:
2.4 調用平台特定的 __cpu_flush 函數
當 __create_page_tables 返回之后,此時,一些特定寄存器的值如下所示:
- r4 = pgtbl (page table 的物理基地址)
- r8 = machine info (struct machine_desc的基地址)
- r9 = cpu id (通過cp15協處理器獲得的cpu id)
- r10 = procinfo (struct proc_info_list的基地址)
在我們需要在開啟mmu之前,做一些必須的工作:清除ICache, 清除 DCache, 清除 Writebuffer, 清除TLB等. 這些一般是通過cp15協處理器來實現的,並且是平台相關的. 這就是 __cpu_flush 需要做的工作.
在 arch/arm/kernel/head.S中:
00091: ldr r13, __switch_data @ address to jump to after 00092:@ mmu has been enabled 00093: adr lr, __enable_mmu @ return (PIC) address 00094: add pc, r10, #PROCINFO_INITFUNC
第91行: 將r13設置為 __switch_data 的地址
第92行: 將lr設置為 __enable_mmu 的地址
第93行: r10存儲的是procinfo的基地址, PROCINFO_INITFUNC是在 arch/arm/kernel/asm-offset.c 中107行定義.
則該行將pc設為 proc_info_list的 __cpu_flush 函數的地址, 即下面跳轉到該函數.
在分析 __lookup_processor_type 的時候,我們已經知道,對於 ARM926EJS 來說,其__cpu_flush指向的是函數 __arm926_setup
下面我們來分析函數 __arm926_setup, 在 arch/arm/mm/proc-arm926.S 中:
00391: .type __arm926_setup, #function 00392:__arm926_setup: 00393: mov r0, #0 00394: mcr p15, 0, r0, c7, c7 @ invalidate I,D caches on v4 00395: mcr p15, 0, r0, c7, c10, 4 @ drain write buffer on v4 00396:#ifdef CONFIG_MMU 00397: mcr p15, 0, r0, c8, c7 @ invalidate I,D TLBs on v4 00398:#endif 00399: 00400: 00401:#ifdef CONFIG_CPU_DCACHE_WRITETHROUGH 00402: mov r0, #4 @ disable write-back on caches explicitly 00403: mcr p15, 7, r0, c15, c0, 0 00404:#endif 00405: 00406: adr r5, arm926_crval 00407: ldmia r5, {r5, r6} 00408: mrc p15, 0, r0, c1, c0 @ get control register v4 00409: bic r0, r0, r5 00410: orr r0, r0, r6 00411:#ifdef CONFIG_CPU_CACHE_ROUND_ROBIN 00412: orr r0, r0, #0x4000 @ .1.. .... .... .... 00413:#endif 00414: mov pc, lr 00415: .size __arm926_setup, . - __arm926_setup 00416: 00417:/* 00418: * R 00419: * .RVI ZFRS BLDP WCAM 00420: * .011 0001 ..11 0101 00421: * 00422: */ 00423: .type arm926_crval, #object 00424:arm926_crval: 00425: crval clear=0x00007f3f, mmuset=0x00003135, ucset=0x00001134
第391, 392行: 是函數聲明
第393行: 將r0設置為0
第394行: 清除(invalidate)Instruction Cache 和 Data Cache.
第395行: 清除(drain) Write Buffer.
第396 - 398行: 如果有配置了MMU,則需要清除(invalidate)Instruction TLB 和Data TLB
接下來,是對控制寄存器c1進行配置,請參考 ARM926 TRM.
第401 - 404行: 如果配置了Data Cache使用writethrough方式, 需要關掉write-back.
第406行: 取arm926_crval的地址到r5中, arm926_crval 在第424行
第407行: 這里我們需要看一下424和425行,其中用到了宏crval,crval是在 arch/arm/mm/proc-macro.S 中:
00053: .macro crval, clear, mmuset, ucset 00054:#ifdef CONFIG_MMU 00055: .word \clear 00056: .word \mmuset 00057:#else 00058: .word \clear 00059: .word \ucset 00060:#endif 00061: .endm
配合425行,我們可以看出,首先在arm926_crval的地址處存放了clear的值,然后接下來的地址存放了mmuset的值(對於配置了MMU的情況)
所以,在407行中,我們將clear和mmuset的值分別存到了r5, r6中
第408行: 獲得控制寄存器c1的值
第409行: 將r0中的 clear (r5) 對應的位都清除掉
第410行: 設置r0中 mmuset (r6) 對應的位
第411 - 413行: 如果配置了使用 round robin方式,需要設置控制寄存器c1的 Bit[16]
第412行: 取lr的值到pc中.
而lr中的值存放的是 __enable_mmu 的地址(arch/arm/kernel/head.S 93行),所以,接下來就是跳轉到函數 __enable_mmu
2.5 開啟mmu
開啟mmu是又函數 __enable_mmu 實現的.
在進入 __enable_mmu 的時候, r0中已經存放了控制寄存器c1的一些配置(在上一步中進行的設置), 但是並沒有真正的打開mmu,
在 __enable_mmu 中,我們將打開mmu.
此時,一些特定寄存器的值如下所示:
- r0 = c1 parameters (用來配置控制寄存器的參數)
- r4 = pgtbl (page table 的物理基地址)
- r8 = machine info (struct machine_desc的基地址)
- r9 = cpu id (通過cp15協處理器獲得的cpu id)
- r10 = procinfo (struct proc_info_list的基地址)
在 arch/arm/kernel/head.S 中:
00146: .type __enable_mmu, %function 00147:__enable_mmu: 00148:#ifdef CONFIG_ALIGNMENT_TRAP 00149: orr r0, r0, #CR_A 00150:#else 00151: bic r0, r0, #CR_A 00152:#endif 00153:#ifdef CONFIG_CPU_DCACHE_DISABLE 00154: bic r0, r0, #CR_C 00155:#endif 00156:#ifdef CONFIG_CPU_BPREDICT_DISABLE 00157: bic r0, r0, #CR_Z 00158:#endif 00159:#ifdef CONFIG_CPU_ICACHE_DISABLE 00160: bic r0, r0, #CR_I 00161:#endif 00162: mov r5, #(domain_val(DOMAIN_USER, DOMAIN_MANAGER) | \ 00163: domain_val(DOMAIN_KERNEL, DOMAIN_MANAGER) | \ 00164: domain_val(DOMAIN_TABLE, DOMAIN_MANAGER) | \ 00165: domain_val(DOMAIN_IO, DOMAIN_CLIENT)) 00166: mcr p15, 0, r5, c3, c0, 0 @ load domain access register 00167: mcr p15, 0, r4, c2, c0, 0 @ load page table pointer 00168: b __turn_mmu_on 00169: 00170:/* 00171: * Enable the MMU. This completely changes the structure of the visible 00172: * memory space. You will not be able to trace execution through this. 00173: * If you have an enquiry about this, *please* check the linux-arm-kernel 00174: * mailing list archives BEFORE sending another post to the list. 00175: * 00176: * r0 = cp#15 control register 00177: * r13 = *virtual* address to jump to upon completion 00178: * 00179: * other registers depend on the function called upon completion 00180: */ 00181: .align 5 00182: .type __turn_mmu_on, %function 00183:__turn_mmu_on: 00184: mov r0, r0 00185: mcr p15, 0, r0, c1, c0, 0 @ write control reg 00186: mrc p15, 0, r3, c0, c0, 0 @ read id reg 00187: mov r3, r3 00188: mov r3, r3 00189: mov pc, r13
第146, 147行: 函數聲明
第148 - 161行: 根據相應的配置,設置r0中的相應的Bit. (r0 將用來配置控制寄存器c1)
第162 - 165行: 設置 domain 參數r5.(r5 將用來配置domain)
第166行: 配置 domain (詳細信息清參考arm相關手冊)
第167行: 配置頁表在存儲器中的位置(set ttb).這里頁表的基地址是r4, 通過寫cp15的c2寄存器來設置頁表基地址.
第168行: 跳轉到 __turn_mmu_on. 從名稱我們可以猜到,下面是要真正打開mmu了.(繼續向下看,我們會發現,__turn_mmu_on就下當前代碼的下方,為什么要跳轉一下呢? 這是有原因的. go on)
第169 - 180行: 空行和注釋. 這里的注釋我們可以看到, r0是cp15控制寄存器的內容, r13存儲了完成后需要跳轉的虛擬地址(因為完成后mmu已經打開了,都是虛擬地址了).
第181行: .algin 5 這句是cache line對齊. 我們可以看到下面一行就是 __turn_mmu_on, 之所以
第182 - 183行: __turn_mmu_on 的函數聲明. 這里我們可以看到, __turn_mmu_on 是緊接着上面第168行的跳轉指令的,只是中間在第181行多了一個cache line對齊.
這么做的原因是: 下面我們要進行真正的打開mmu操作了, 我們要把打開mmu的操作放到一個單獨的cache line上. 而在之前的"啟動條件"一節我們說了,I Cache是可以打開也可以關閉的,這里這么做的原因是要保證在ICache打開的時候,打開mmu的操作也能正常執行.
第184行: 這是一個空操作,相當於nop. 在arm中,nop操作經常用指令 mov rd, rd 來實現.
注意: 為什么這里要有一個nop,我思考了很長時間,這里是我的猜測,可能不是正確的:因為之前設置了頁表基地址(set ttb),到下一行(185行)打開mmu操作,中間的指令序列是這樣的:
set ttb(第167行)
branch(第168行)
nop(第184行)
enable mmu(第185行)
對於arm的五級流水線: fetch - decode - execute - memory - write 他們執行的情況如下圖所示:
這里需要說明的是,branch操作會在3個cycle中完成,並且會導致重新取指.從這個圖我們可以看出來,在enable mmu操作取指的時候, set ttb操作剛好完成.
第185行: 寫cp15的控制寄存器c1, 這里是打開mmu的操作,同時會打開cache等(根據r0相應的配置)
第186行: 讀取id寄存器.
第187 - 188行: 兩個nop.
第189行: 取r13到pc中,我們前面已經看到了, r13中存儲的是 __switch_data (在 arch/arm/kernel/head.S 91行),下面會跳到 __switch_data.
第187,188行的兩個nop是非常重要的,因為在185行打開mmu操作之后,要等到3個cycle之后才會生效,這和arm的流水線有關系.
因而,在打開mmu操作之后的加了兩個nop操作.
2.6 切換數據
在arch/arm/kernel/head-common.S 中:
00014: .type __switch_data, %object 00015:__switch_data: 00016: .long __mmap_switched 00017: .long __data_loc @ r4 00018: .long __data_start @ r5 00019: .long __bss_start @ r6 00020: .long _end @ r7 00021: .long processor_id @ r4 00022: .long __machine_arch_type @ r5 00023: .long cr_alignment @ r6 00024: .long init_thread_union + THREAD_START_SP @ sp 00025: 00026:/* 00027: * The following fragment of code is executed with the MMU on in MMU mode, 00028: * and uses absolute addresses; this is not position independent. 00029: * 00030: * r0 = cp#15 control register 00031: * r1 = machine ID 00032: * r9 = processor ID 00033: */ 00034: .type __mmap_switched, %function 00035:__mmap_switched: 00036: adr r3, __switch_data + 4 00037: 00038: ldmia r3!, {r4, r5, r6, r7} 00039: cmp r4, r5 @ Copy data segment if needed 00040:1: cmpne r5, r6 00041: ldrne fp, [r4], #4 00042: strne fp, [r5], #4 00043: bne 1b 00044: 00045: mov fp, #0 @ Clear BSS (and zero fp) 00046:1: cmp r6, r7 00047: strcc fp, [r6],#4 00048: bcc 1b 00049: 00050: ldmia r3, {r4, r5, r6, sp} 00051: str r9, [r4] @ Save processor ID 00052: str r1, [r5] @ Save machine type 00053: bic r4, r0, #CR_A @ Clear 'A' bit 00054: stmia r6, {r0, r4} @ Save control register values 00055: b start_kernel
第14, 15行: 函數聲明
第16 - 24行: 定義了一些地址,例如第16行存儲的是 __mmap_switched 的地址, 第17行存儲的是 __data_loc 的地址 ......
第34, 35行: 函數 __mmap_switched
第36行: 取 __switch_data + 4的地址到r3. 從上文可以看到這個地址就是第17行的地址.
第37行: 依次取出從第17行到第20行的地址,存儲到r4, r5, r6, r7 中. 並且累加r3的值.當執行完后, r3指向了第21行的位置.
對照上文,我們可以得知:
- r4 - __data_loc
- r5 - __data_start
- r6 - __bss_start
- r7 - _end
這幾個符號都是在 arch/arm/kernel/vmlinux.lds.S 中定義的變量:
00102:#ifdef CONFIG_XIP_KERNEL 00103: __data_loc = ALIGN(4); /* location in binary */ 00104: . = PAGE_OFFSET + TEXT_OFFSET; 00105:#else 00106: . = ALIGN(THREAD_SIZE); 00107: __data_loc = .; 00108:#endif 00109: 00110: .data : AT(__data_loc) { 00111: __data_start = .; /* address in memory */ 00112: 00113:/* 00114: * first, the init task union, aligned 00115: * to an 8192 byte boundary. 00116: */ 00117: *(.init.task) ...... 00158: .bss : { 00159: __bss_start = .; /* BSS */ 00160: *(.bss) 00161: *(COMMON) 00162: _end = .; 00163:}
對於這四個變量,我們簡單的介紹一下:
__data_loc 是數據存放的位置
__data_start 是數據開始的位置
__bss_start 是bss開始的位置
_end 是bss結束的位置, 也是內核結束的位置
其中對第110行的指令講解一下: 這里定義了.data 段,后面的AT(__data_loc) 的意思是這部分的內容是在__data_loc中存儲的(要注意,儲存的位置和鏈接的位置是可以不相同的).
關於 AT 詳細的信息請參考 ld.info
第38行: 比較 __data_loc 和 __data_start
第39 - 43行: 這幾行是判斷數據存儲的位置和數據的開始的位置是否相等,如果不相等,則需要搬運數據,從 __data_loc 將數據搬到 __data_start.
其中 __bss_start 是bss的開始的位置,也標志了 data 結束的位置,因而用其作為判斷數據是否搬運完成.
第45 - 48行: 是清除 bss 段的內容,將其都置成0. 這里使用 _end 來判斷 bss 的結束位置.
第50行: 因為在第38行的時候,r3被更新到指向第21行的位置.因而這里取得r4, r5, r6, sp的值分別是:
- r4 - processor_id
- r5 - __machine_arch_type
- r6 - cr_alignment
- sp - init_thread_union + THREAD_START_SP
processor_id 和 __machine_arch_type 這兩個變量是在 arch/arm/kernel/setup.c 中 第62, 63行中定義的.
cr_alignment 是在 arch/arm/kernel/entry-armv.S 中定義的:
00182: .globl cr_alignment 00183: .globl cr_no_alignment 00184:cr_alignment: 00185: .space 4 00186:cr_no_alignment: 00187: .space 4
init_thread_union 是 init進程的基地址. 在 arch/arm/kernel/init_task.c 中:
00033: union thread_union init_thread_union 00034: __attribute__((__section__(".init.task"))) = 00035: { INIT_THREAD_INFO(init_task) };
對照 vmlnux.lds.S 中的 的117行,我們可以知道init task是存放在 .data 段的開始8k, 並且是THREAD_SIZE(8k)對齊的
第51行: 將r9中存放的 processor id (在arch/arm/kernel/head.S 75行) 賦值給變量 processor_id
第52行: 將r1中存放的 machine id (見"啟動條件"一節)賦值給變量 __machine_arch_type
第53行: 清除r0中的 CR_A 位並將值存到r4中. CR_A 是在 include/asm-arm/system.h 21行定義, 是cp15控制寄存器c1的Bit[1](alignment fault enable/disable)
第54行: 這一行是存儲控制寄存器的值.
從上面 arch/arm/kernel/entry-armv.S 的代碼我們可以得知.
這一句是將r0存儲到了 cr_alignment 中,將r4存儲到了 cr_no_alignment 中.
第55行: 最終跳轉到start_kernel