[Linux]pthread學習筆記


<UNIX環境高級編程(第二版)> 線程學習P287-P297

#include <pthread.h>
//新建線程
int pthread_create(pthread_t *restrict tidp, const pthread_attr_t *restrict attr, void *(*start_rtn)(void *), void *restrict arg);

//線程終止
void pthread_exit(void *rval_ptr);//線程自身主動退出
int pthread_join(pthread_t tid, void **rval_ptr);//其他線程阻塞自身,等待tid退出

//線程清理
void pthread_cleanup_push(void (*rtn)(void *), void *arg);
void pthread_cleanup_pop(int execute);

補充說明:

1. 線程創建

pthread_create()函數返回值0,表示創建成功,線程id保存載tidp中;失敗則返回非零,需自行處理,不會修改errno值

2. 線程終止

a. 任一線程調用exit, _Exit, _exit都將導致整個進程終止;

b. 單個線程退出方式有三種:

  1> 線程執行函數start_rtn()中使用return返回,返回值為線程退出碼;

  2> 被同一個進程的其他線程使用pthread_cancel()取消;

  3> 線程自身調用了pthread_exit();

說明:pthread_join(pthread_t tid, void **rval_ptr)函數會阻塞調用線程,直到tid線程通過上述三種方式終止退出,且return/pthread_exit()方式會設置相應線程退出碼rval_ptr,而pthread_cancel()取消的線程,將退出碼設置為PTHREAD_CANCELED.

3. 線程清理處理程序(thread cleanup handler)

3.a> pthread_cleanup_push()與pthread_cleanup_pop()均為<pthread.h>中實現的宏定義,具體實現如下:

pthread_cleanup_push and pthread_cleanup_pop are macros and must always
   be used in matching pairs at the same nesting level of braces.  */
#  define pthread_cleanup_push(routine, arg) \
  do {									      \
    __pthread_cleanup_class __clframe (routine, arg)

/* Remove a cleanup handler installed by the matching pthread_cleanup_push.
   If EXECUTE is non-zero, the handler function is called. */
#  define pthread_cleanup_pop(execute) \
    __clframe.__setdoit (execute);					      \
  } while (0)

 可見push/pop中的{/}是一一對應的,因此pthread_cleanup_push/pop()也應一一對應出現,否則編譯出錯。

3.b> 當線程執行下列之一操作時調用清理函數,thread_cleanup_push由棧結構實現,注意清理程序調用的順序,先入后出。

  1: 調用pthread_exit()時,而直接return不會出發清理函數;

  2: 相應取消請求pthread_cancel()時;

  3: 使用非零execute參數調用pthread_cleanup_pop()時;

尤其需注意pthread_cleanup_pop()參數不同及此語句所處位置不同而有不同效果。

看此代碼實例,注意return或pthread_exit()位置不同導致pthread_cleanup_pop()不同參數的效果變化。

#include <pthread.h>
void testPointerSize()
{
	void *tret;
	printf("size of pointer in x86-64:%d\n",sizeof(tret));	
	//result is 8 in x86-64.
	//which is 4 in x86-32.

	printf("size of int in x86-64:%d\n",sizeof(int));	
	//result is 4 in x86-64.
	//which is also 4 in x86-32.
}
void cleanup(void *arg)
{
	printf("cleanup:%s\n",(char *)arg);
}
void * thr_fn1(void *arg)
{
	printf("thread 1 start\n");
	pthread_cleanup_push(cleanup, "thread 1 first handler");
	pthread_cleanup_push(cleanup, "thread 1 second handler");
	if(arg)
		return ((void *)1);//arg !=0 ,return here.
//	return here will not triger any cleanup.
	pthread_cleanup_pop(0);
	pthread_cleanup_pop(1);
	return ((void *)2);//will not run this
}
void * thr_fn2(void *arg)
{
	printf("thread 2 start\n");
	pthread_cleanup_push(cleanup, "thread 2 first handler");
	pthread_cleanup_push(cleanup, "thread 2 second handler");
	pthread_cleanup_pop(0);
	pthread_cleanup_pop(1);
	return ((void *)2);
//	return here can triger cleanup second handler;
}

void * thr_fn3(void *arg)
{
	printf("thread 3 start\n");
	pthread_cleanup_push(cleanup, "thread 3 first handler");
	pthread_cleanup_push(cleanup, "thread 3 second handler");
	if(arg)
		pthread_exit((void *)3);
	//pthread_exit() here will triger both cleanup first&second handler.
	pthread_cleanup_pop(1);
	pthread_cleanup_pop(0);
	pthread_exit((void *)3);//wont run this
}
void * thr_fn4(void *arg)
{
	printf("thread 4 start\n");
	pthread_cleanup_push(cleanup, "thread 4 first handler");
	pthread_cleanup_push(cleanup, "thread 4 second handler");
	pthread_cleanup_pop(1);
	pthread_cleanup_pop(0);
	pthread_exit((void *)4);
	//pthread_exit() here will triger cleanup second handler.
}

int main(void)
{
	testPointerSize();
	int err;
	pthread_t tid1, tid2, tid3, tid4;
	void *tret;
	
	err = pthread_create(&tid1, NULL, thr_fn1, (void *)1);
	err = pthread_join(tid1,&tret);	
	printf("thread 1 exit code %d\n",(int)tret);
	
	err = pthread_create(&tid2, NULL, thr_fn2, (void *)2);
	err = pthread_join(tid2, &tret);
	printf("thread 2 exit code %d\n",(int)tret);

	err = pthread_create(&tid3, NULL, thr_fn3, (void *)3);
	err = pthread_join(tid3,&tret);	
	printf("thread 3 exit code %d\n",(int)tret);
	
	err = pthread_create(&tid4, NULL, thr_fn4, (void *)4);
	err = pthread_join(tid4, &tret);
	printf("thread 4 exit code %d\n",(int)tret);
}

 運行結果:

[root@hello testData]# ./test 
size of pointer in x86-64:8
size of int in x86-64:4
thread 1 start
thread 1 exit code 1
thread 2 start
cleanup:thread 2 first handler
thread 2 exit code 2
thread 3 start
cleanup:thread 3 second handler
cleanup:thread 3 first handler
thread 3 exit code 3
thread 4 start
cleanup:thread 4 second handler
thread 4 exit code 4

  由上述測試程序總結如下:

1> push與pop間的return,將導致清理程序不被觸發;

2> 位於pop之后return,由pop的參數確定是否觸發清理程序,非零參數觸發,零參數不觸發;

3> push/pop間的pthread_exit(),將觸發所有清理函數;

4>位於pop之后的pthread_exit()時,pop參數決定是否觸發清理程序;

其實,上述四種情況只是測試驗證了前文3.b所說三個條件,加深理解。

 

參考文獻:

1. Posix線程編程指南(4)

2. <UNIX環境高級編程(第2版)> P295-296程序

3. pthread_cleanup_push()/pthread_cleanup_pop()的詳解

4. Linux中vim的列編輯實例 (Mark記錄)


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM