對於HMM的評估問題,利用動態規划可以用前向算法,從前到后算出前向變量;也可以采用后向算法,從后到前算出后向變量。
先介紹后向變量βt(i):給定模型μ=(A,B,π),並且在時間 時刻t 狀態為si 的前提下,輸出序列為Ot+1Ot+2...OT的概率,即
βt(i)=P(Ot+1Ot+2...OT|qt=si,μ)
歸納過程
假設仍然有3個狀態
當t=T時,按照定義:時間t 狀態qT 輸出為OT+1......的概率,從T+1開始的輸出是不存在的(因為T時刻是終止終止狀態),即T之后是空,是個必然事件,因此βt(i)=1,1≤1≤N
當t=T-1時,
βT-1(i)=P(OT|qT-1=si,μ) = ai1*b1(OT)*βT(1) + ai2*b2(OT)*βT(2) + ai3*b3(OT)*βT(3)
......
當t=1時,
β1(1)=P(O2O3...OT|q2=s1,μ) = a11*b1(O2)*β2(1) + a12*b2(O2)*β2(2) + a13*b3(O2)*β2(3)
β1(2)=P(O2O3...OT|q2=s1,μ) = a21*b1(O2)*β2(1) + a22*b2(O2)*β2(2) + a23*b3(O2)*β2(3)
β1(3)=P(O2O3...OT|q2=s1,μ) = a31*b1(O2)*β2(1) + a32*b2(O2)*β2(2) + a33*b3(O2)*β2(3)
P(O1O2...OT|μ) =
=
=
后向算法
step1 初始化:βT(i)=1, 1≤1≤N
step2 歸納計算:
1≤t≤T-1, 1≤i≤N
step3 求終結和:
P(O|μ)=
時間復雜度
計算某時刻在某個狀態下的后向變量需要看后一時刻的N個狀態,此時時間復雜度為O(N),每個時刻有N個狀態,此時時間復雜度為N*O(N)=O(N2),又有T個時刻,所以時間復雜度為T*O(N2)=O(N2T)。
程序例證
后向算法
計算P(O|M):
step1:β4(1) = 1 β4(2) = 1 β4(3) = 1
step2:β3(1) = β4(1)*a11*b1(white) + β4(2)*a12*b2(white) + β4(3)*a13*b3(white)
...
step3:P(O|M) = π1*β1(1)*b1(O1) + π2*β1(2)*b2(O1) + π3*β1(3)*b3(O1)
程序代碼
#include <stdio.h> #include <stdlib.h> #include <string.h> int main() { float a[3][3] = {{0.5,0.2,0.3},{0.3,0.5,0.2},{0.2,0.3,0.5}}; float b[3][2] = {{0.5,0.5},{0.4,0.6},{0.7,0.3}}; float result[4][3]; int list[4] = {0,1,0,1}; result[3][0] = 1; result[3][1] = 1; result[3][2] = 1; int i,j,k, count = 3; for (i=2; i>=0; i--) { for(j=0; j<=2; j++) { result[i][j] = 0; for(k=0; k<=2; k++) { result[i][j] += result[i+1][k] * a[j][k] * b[k][list[count]]; } } count -= 1; } for (i=0; i<=3; i++) { for(j=0; j<=2; j++) { printf("b[%d][%d] = %f\n",i+1,j+1,result[i][j]); } } printf("backward:%f\n", result[0][0]*0.2*0.5+result[0][1]*0.4*0.4+result[0][2]*0.4*0.7); return 0; }
運行結果