轉載自:http://asfr.blogbus.com/logs/44208067.html
程序。
盡管 Hadoop 框架是使用Java編寫的但是我們仍然需要使用像C++、Python等語言來實現 Hadoop程序。盡管 Hadoop官方網站給的示例程序是使用Jython編寫並打包成Jar文件,這樣顯然造成了不便,其實,不一定非要這樣來實現,我們可以使用Python與 Hadoop 關聯進行編程 ,看看位於/src/examples/python/WordCount.py 的例子,你將了解到我在說什么。
我們想要做什么?
我們將編寫一個簡單的 MapReduce 程序,使用的是C-Python,而不是Jython編寫后打包成jar包的程序。
我們的這個例子將模仿 WordCount 並使用Python來實現,例子通過讀取文本文件來統計出單詞的出現次數。結果也以文本形式輸出,每一行包含一個單詞和單詞出現的次數,兩者中間使用制表符來想間隔。
先決條件
編寫這個程序之前,你學要架設好 Hadoop 集群,這樣才能不會在后期工作抓瞎。如果你沒有架設好,那么在后面有個簡明教程來教你在Ubuntu Linux 上搭建(同樣適用於其他發行版linux、unix)
如何使用Hadoop Distributed File System (HDFS)在Ubuntu Linux 建立單節點的 Hadoop 集群
如何使用Hadoop Distributed File System (HDFS)在Ubuntu Linux 建立多節點的 Hadoop 集群
Python的MapReduce代碼
使用Python編寫MapReduce代碼的技巧就在於我們使用了 HadoopStreaming 來幫助我們在Map 和 Reduce間傳遞數據通過STDIN (標准輸入)和STDOUT (標准輸出).我們僅僅使用Python的 sys.stdin來輸入數據,使用 sys.stdout輸出數據,這樣做是因為HadoopStreaming會幫我們辦好 其他事。這是真的,別不相信!
Map: mapper.py
將下列的代碼保存在 /home/hadoop/mapper.py中,他將從STDIN讀取數據並將單詞成行分隔開,生成一個列表映射單詞與發生次數的關系:
注意:要確保這個腳本有足夠權限 (chmod +x /home/hadoop/mapper.py)。
#!/usr/bin/env python
import sys
# input comes from STDIN (standard input)
for line in sys.stdin:
# remove leading and trailing whitespace
line = line.strip()
# split the line into words
words = line.split()
# increase counters
for word in words:
# write the results to STDOUT (standard output);
# what we output here will be the input for the
# Reduce step, i.e. the input for reducer.py
#
# tab-delimited; the trivial word count is 1
print '%s\\t%s' % (word, 1)
Reduce: reducer.py
將代碼存儲在 /home/hadoop/reducer.py 中,這個腳本的作用是從 mapper.py 的STDIN中讀取結果,然后計算每個單詞出現次數的總和,並輸出結果到STDOUT。
同樣,要注意腳本權限: chmod +x /home/hadoop/reducer.py
#!/usr/bin/env python
from operator import itemgetter
import sys
# maps words to their counts
word2count = {}
# input comes from STDIN
for line in sys.stdin:
# remove leading and trailing whitespace
line = line.strip()
# parse the input we got from mapper.py
word, count = line.split('\\t', 1)
# convert count (currently a string) to int
try:
count = int(count)
word2count[word] = word2count.get(word, 0) + count
except ValueError:
# count was not a number, so silently
# ignore/discard this line
pass
# sort the words lexigraphically;
#
# this step is NOT required, we just do it so that our
# final output will look more like the official Hadoop
# word count examples
sorted_word2count = sorted(word2count.items(), key=itemgetter(0))
# write the results to STDOUT (standard output)
for word, count in sorted_word2count:
print '%s\\t%s'% (word, count)
測試你的代碼( cat data | map | sort | reduce)
我建議你在運行MapReduce job測試前嘗試手工測試你的 mapper.py 和 reducer.py腳本,以免得不到任何返回結果
這里有一些建議,關於如何測試你的Map和Reduce的功能:
——————————————————————————————————————————————\r\n
# very basic test
hadoop@ubuntu:~$ echo "foo foo quux labs foo bar quux" | /home/hadoop/mapper.py
foo 1
foo 1
quux 1
labs 1
foo 1
bar 1
——————————————————————————————————————————————
hadoop@ubuntu:~$ echo "foo foo quux labs foo bar quux" | /home/hadoop/mapper.py | sort | /home/hadoop/reducer.py
bar 1
foo 3
labs 1
——————————————————————————————————————————————
# using one of the ebooks as example input
# (see below on where to get the ebooks)
hadoop@ubuntu:~$ cat /tmp/gutenberg/20417-8.txt | /home/hadoop/mapper.py
The 1
Project 1
Gutenberg 1
EBook 1
of 1
[...]
(you get the idea)
quux 2
quux 1
——————————————————————————————————————————————
在Hadoop平台上運行Python腳本
為了這個例子,我們將需要三種電子書:
- The Outline of Science, Vol. 1 (of 4) by J. Arthur Thomson\r\n
- The Notebooks of Leonardo Da Vinci\r\n
- Ulysses by James Joyce
hadoop@ubuntu:~$ ls -l /tmp/gutenberg/
total 3592
-rw-r--r-- 1 hadoop hadoop 674425 2007-01-22 12:56 20417-8.txt
-rw-r--r-- 1 hadoop hadoop 1423808 2006-08-03 16:36 7ldvc10.txt
-rw-r--r-- 1 hadoop hadoop 1561677 2004-11-26 09:48 ulyss12.txt
hadoop@ubuntu:~$
\r\n
復制本地數據到HDFS
在我們運行MapReduce job 前,我們需要將本地的文件復制到HDFS中:
hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop dfs -copyFromLocal /tmp/gutenberg gutenberg
hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop dfs -ls
Found 1 items
/user/hadoop/gutenberg <dir>
hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop dfs -ls gutenberg
Found 3 items
/user/hadoop/gutenberg/20417-8.txt <r 1> 674425
/user/hadoop/gutenberg/7ldvc10.txt <r 1> 1423808
/user/hadoop/gutenberg/ulyss12.txt <r 1> 1561677
執行 MapReduce job
現在,一切准備就緒,我們將在運行Python MapReduce job 在Hadoop集群上。像我上面所說的,我們使用的是
HadoopStreaming 幫助我們傳遞數據在Map和Reduce間並通過STDIN和STDOUT,進行標准化輸入輸出。
hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop jar contrib/streaming/hadoop-0.19.1-streaming.jar
-mapper /home/hadoop/mapper.py -reducer /home/hadoop/reducer.py -input gutenberg/*
-output gutenberg-output
在運行中,如果你想更改Hadoop的一些設置,如增加Reduce任務的數量,你可以使用“-jobconf”選項:
hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop jar contrib/streaming/hadoop-0.19.1-streaming.jar
-jobconf mapred.reduce.tasks=16 -mapper ...
一個重要的備忘是關於Hadoop does not honor mapred.map.tasks
這個任務將會讀取HDFS目錄下的gutenberg並處理他們,將結果存儲在獨立的結果文件中,並存儲在HDFS目錄下的
gutenberg-output目錄。
之前執行的結果如下:
hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop jar contrib/streaming/hadoop-0.19.1-streaming.jar
-mapper /home/hadoop/mapper.py -reducer /home/hadoop/reducer.py -input gutenberg/*
-output gutenberg-output
additionalConfSpec_:null
null=@@@userJobConfProps_.get(stream.shipped.hadoopstreaming
packageJobJar: [/usr/local/hadoop-datastore/hadoop-hadoop/hadoop-unjar54543/]
[] /tmp/streamjob54544.jar tmpDir=null
[...] INFO mapred.FileInputFormat: Total input paths to process : 7
[...] INFO streaming.StreamJob: getLocalDirs(): [/usr/local/hadoop-datastore/hadoop-hadoop/mapred/local]
[...] INFO streaming.StreamJob: Running job: job_200803031615_0021
[...]
[...] INFO streaming.StreamJob: map 0% reduce 0%
[...] INFO streaming.StreamJob: map 43% reduce 0%
[...] INFO streaming.StreamJob: map 86% reduce 0%
[...] INFO streaming.StreamJob: map 100% reduce 0%
[...] INFO streaming.StreamJob: map 100% reduce 33%
[...] INFO streaming.StreamJob: map 100% reduce 70%
[...] INFO streaming.StreamJob: map 100% reduce 77%
[...] INFO streaming.StreamJob: map 100% reduce 100%
[...] INFO streaming.StreamJob: Job complete: job_200803031615_0021
[...] INFO streaming.StreamJob: Output: gutenberg-output hadoop@ubuntu:/usr/local/hadoop$
正如你所見到的上面的輸出結果,Hadoop 同時還提供了一個基本的WEB接口顯示統計結果和信息。
當Hadoop集群在執行時,你可以使用瀏覽器訪問 http://localhost:50030/ ,如圖:
檢查結果是否輸出並存儲在HDFS目錄下的gutenberg-output中:
hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop dfs -ls gutenberg-output
Found 1 items
/user/hadoop/gutenberg-output/part-00000 <r 1> 903193 2007-09-21 13:00
hadoop@ubuntu:/usr/local/hadoop$
可以使用dfs -cat 命令檢查文件目錄
hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop dfs -cat gutenberg-output/part-00000
"(Lo)cra" 1
"1490 1
"1498," 1
"35" 1
"40," 1
"A 2
"AS-IS". 2
"A_ 1
"Absoluti 1
[...]
hadoop@ubuntu:/usr/local/hadoop$
注意比輸出,上面結果的(")符號不是Hadoop插入的。
改善Mapper 和 Reducer 使用Python的iterators 和 generators
請參考:Python iterators and generators
http://www.michael-noll.com/wiki/Writing_An_Hadoop_MapReduce_Program_In_Python#What_we_want_to_do

