C++ 多進程並發框架FFLIB之Tutorial


      FFLIB框架是為簡化分布式/多進程並發而生的。它起始於本人嘗試解決工作中經常遇到的問題如消息定義、異步、多線程、單元測試、性能優化等。基本介紹可以看這里:

      http://www.cnblogs.com/zhiranok/archive/2012/07/30/fflib_framework.html

  其中之所以特意采用了Broker模式,是吸收了MPI和Erlang的思想。

  FFLIB 目前處於alpha階段,一些有用的功能還需繼續添加。但是FFLIB一開始就是為了解決實際問題而生。Broker 即可以以獨立進程運行,也可以集成到某個特定的進程中啟動。除了這些,FFLIB中使用epoll實現的網絡層也極具參考價值。網上有一些關於epoll ET 和 LT的討論,關於哪種方式更簡單,本人的答案是ET。ET模式下epoll 就是一個完全狀態機。開發者只需實現FD的read、write、error 三種狀態即可。

  我進一步挖掘FFLIB的功能。寫一篇FFLIB的Tutorial。創建更多的FFLIB使用示例,以此來深入探討FFLIB的意義。在游戲開發中,或者一些分布式的環境中,有許多大家熟悉的模式。,本文挑選了如下作為FFLIB示例:

  • Request/Reply
  • 點對點通訊
  • 阻塞通訊
  • 多播通訊
  • Map/Reduce

Request/Reply

異步的Request/Reply

  在FFLIB中所有的消息都是Request和Reply一一對應的,默認情況下工作在異步模式。假設如下場景,Flash連入GatewayServer並發送Login消息包,GatewaServer 解析用戶名密碼,調用LoginServer 驗證。

首先定義msg:

struct user_login_t
{
    struct in_t: public msg_i
    {
        in_t():
            msg_i("user_login_t::in_t")
        {}
        string encode()
        {
            return (init_encoder() << uid << value).get_buff();
        }
        void decode(const string& src_buff_)
        {
            init_decoder(src_buff_) >> uid >> value;
        }
        long   uid;
        string value;
    };

    struct out_t: public msg_i
    {
        out_t():
            msg_i("user_login_t::out_t")
        {}
        string encode()
        {
            return (init_encoder() << value).get_buff();
        }
        void decode(const string& src_buff_)
        {
            init_decoder(src_buff_) >> value;
        }
        bool value;
    };
};

LoginServer中如此定義接口:

class login_server_t
{
public:
    void verify(user_login_t::in_t& in_msg_, rpc_callcack_t<user_login_t::out_t>& cb_)
    {
        user_login_t::out_t out;
        out.value = true;
        cb_(out);
    }
};

login_server_t login_server;
singleton_t<msg_bus_t>::instance().create_service("login_server", 1)
            .bind_service(&login_server)
            .reg(&login_server_t::verify);

在GatewayServer中調用上面接口:

struct lambda_t
    {
        static void callback(user_login_t::out_t& msg_, socket_ptr_t socket_)
        {
            if (true == msg_.value)
            {
                //! socket_->send_msg("login ok");
            }
            else
            {
                //! socket_->send_msg("login failed");
            }
        }
    };

    user_login_t::in_t in;
    in.uid  = 520;
    in.value = "ILoveYou";
    socket_ptr_t flash_socket = NULL;//! TODO

    singleton_t<msg_bus_t>::instance()
         .get_service_group("login_server_t")
        ->get_service(1)
       ->async_call(in, binder_t::callback(&lambda_t::callback, flash_socket));

如上所示, async_call 可以通過binder_t模板函數為回調函綁定參數。

同步的Request/Reply

  大部分時候我們期望Reply被異步處理,但有時Reply 必須被首先處理后才能觸發后續操作,一般這種情況發生在程序初始化之時。假設如下場景,SceneServer啟動時必須從SuperServer中獲取配置,然后才能執行加載場景數據等后續初始化操作。

  首先定義通信的msg:

struct config_t
{
    struct in_t: public msg_i
    {
        in_t():
            msg_i("config_t::in_t")
        {}
        string encode()
        {
            return (init_encoder() << server_type << server_id).get_buff();
        }
        void decode(const string& src_buff_)
        {
            init_decoder(src_buff_) >> server_type >> server_id;
        }
        int server_type;
        int server_id;
    };
    struct out_t: public msg_i
    {
        out_t():
            msg_i("config_t::out_t")
        {}
        string encode()
        {
            return (init_encoder() << value).get_buff();
        }
        void decode(const string& src_buff_)
        {
            init_decoder(src_buff_) >> value;
        }
        map<string, string> value;
    };
};

 

如上所示, msg 序列化自動支持map。

  SuperServer 中定義返回配置的接口:

super_server_t super_server;
singleton_t<msg_bus_t>::instance().create_service("super_server", 1)
    .bind_service(&super_server)
    .reg(&super_server_t::get_config);

SceneServer 可以如此實現同步Request/Reply:

rpc_future_t<config_t::out_t> rpc_future;

config_t::in_t in;
in.server_type = 1;
in.server_id   = 1;

const config_t::out_t& out = rpc_future.call(
        singleton_t<msg_bus_t>::instance().get_service_group("super_server")
        ->get_service(1), in);

cout << out.value.size() <<"\n";
//std::foreach(out.value.begin(), out.value.end(), fuctor_xx);

點對點通訊

  異步Request/Reply 已經能夠解決大部分問題了,但是有時處理Push模式時稍顯吃了。我們知道消息推算有Push 和Poll兩種方式。了解二者:

      http://blog.sina.com.cn/s/blog_6617106b0100hrm1.html

  上面提到的Request/Reply 非常適合poll模式,以上一個獲取配置為例,SuperServer由於定義接口的時候只需知道callback,並不知道SceneServer的具體連接。,所以SuperServer不能向SceneServer Push消息。在FFLIB中並沒有限定某個節點必須是Client或只能是Service,實際上可以兼有二者的角色。SceneServer 也可以提供接口供SuperServer調用,這就符合了Push的語義。假設如下場景,GatewayServer需要在用戶登入時調用通知SessionServer,而某一時刻SessionServer也可能呢通知GatewayServer 強制某用戶下線。二者互為client和service。大家必須知道,在FFLIB中實現兩個節點的通信只需知道對方的服務名稱即可,Broker 在此時實現解耦的作用非常明顯,若要增加對其他節點的通信,只需通過服務名稱async_call即可。

  定義通信的msg:

struct user_online_t
{
    struct in_t: public msg_i
    {
        in_t():
            msg_i("user_online_t::in_t")
        {}
        string encode()
        {
            return (init_encoder() << uid).get_buff();
        }
        void decode(const string& src_buff_)
        {
            init_decoder(src_buff_) >> uid;
        }
        long uid;
    };
    struct out_t: public msg_i
    {
        out_t():
            msg_i("user_online_t::out_t")
        {}
        string encode()
        {
            return (init_encoder() << value).get_buff();
        }
        void decode(const string& src_buff_)
        {
            init_decoder(src_buff_) >> value;
        }
        bool value;
    };
};

struct force_user_offline_t
{
    struct in_t: public msg_i
    {
        in_t():
            msg_i("force_user_offline_t::in_t")
        {}
        string encode()
        {
            return (init_encoder() << uid).get_buff();
        }
        void decode(const string& src_buff_)
        {
            init_decoder(src_buff_) >> uid;
        }

        long uid;
    };

    struct out_t: public msg_i
    {
        out_t():
            msg_i("force_user_offline_t::out_t")
        {}

        string encode()
        {
            return (init_encoder() << value).get_buff();
        }

        void decode(const string& src_buff_)
        {
            init_decoder(src_buff_) >> value;
        }

        bool value;
    };
};

GatewayServer 通知SessionServer 用戶上線,並提供強制用戶下線的接口:

class gateway_server_t
{
public:
    void force_user_offline(force_user_offline_t::in_t& in_msg_, rpc_callcack_t<force_user_offline_t::out_t>& cb_)
    {
        //! close user socket
        force_user_offline_t::out_t out;
        out.value = true;
        cb_(out);
    }
};

gateway_server_t gateway_server;

singleton_t<msg_bus_t>::instance().create_service("gateway_server", 1)
            .bind_service(&gateway_server)
            .reg(&gateway_server_t::force_user_offline);

user_online_t::in_t in;
in.uid = 520;

singleton_t<msg_bus_t>::instance()
    .get_service_group("session_server")
    ->get_service(1)
    ->async_call(in, callback_TODO);

SessionServer 提供用戶上線接口,可能會調用GatewayServer 的接口強制用戶下線。

class session_server_t
{
public:
    void user_login(user_online_t::in_t& in_msg_, rpc_callcack_t<user_online_t::out_t>& cb_)
    {
        //! close user socket
        user_online_t::out_t out;
        out.value = true;
        cb_(out);
    }
};

session_server_t session_server;

singleton_t<msg_bus_t>::instance().create_service("session_server", 1)
            .bind_service(&session_server)
            .reg(&session_server_t::user_login);

force_user_offline_t::in_t in;
in.uid = 520;

singleton_t<msg_bus_t>::instance()
    .get_service_group("gateway_server")
    ->get_service(1)
    ->async_call(in, callback_TODO);

多播通信

  和點對點通信一樣,要實現多播,只需要知道目標的服務名稱。特別提一點的是,FFLIB中有服務組的概念。比如啟動了多個場景服務器SceneServer,除了數據不同,二者接口完全相同,有可能只是相同進程的不同實例。在FFLIB框架中把這些服務歸為一個服務組,然后再為每個實例分配索引id。

  假設如下場景,SuperServer 中要實現一個GM接口,通知所有SceneServer 重新加載配置。

  定義通信的msg:

struct reload_config_t
{
    struct in_t: public msg_i
    {
        in_t():
            msg_i("reload_config_t::in_t")
        {}
        string encode()
        {
            return (init_encoder()).get_buff();
        }
        void decode(const string& src_buff_)
        {
            init_decoder(src_buff_);
        }
    };

    struct out_t: public msg_i
    {
        out_t():
            msg_i("reload_config_t::out_t")
        {}

        string encode()
        {
            return (init_encoder() << value).get_buff();
        }

        void decode(const string& src_buff_)
        {
            init_decoder(src_buff_) >> value;
        }

        bool value;
    };
};

SceneServer 提供重新載入配置接口:

class scene_server_t
{
public:
    void reload_config(reload_config_t::in_t& in_msg_, rpc_callcack_t<reload_config_t::out_t>& cb_)
    {
        //! close user socket
        reload_config_t::out_t out;
        out.value = true;
        cb_(out);
    }
};

scene_server_t scene_server;

singleton_t<msg_bus_t>::instance().create_service("scene_server", 1)
            .bind_service(&scene_server)
            .reg(&scene_server_t::reload_config); 

在SuperServer 中如此實現多播(跟准確是廣播,大同小異):

struct lambda_t
{
  static void reload_config(rpc_service_t* rs_)
  {
          reload_config_t::in_t in;
          rs_->async_call(in, callback_TODO);
  }
};

singleton_t<msg_bus_t>::instance()
    .get_service_group("scene_server")
    ->foreach(&lambda_t::reload_config);

Map/Reduce

  在游戲中使用Map/reduce 的情形並不多見,本人找到網上最常見的Map/reduce 實例 WordCount。情形如下:有一些文本字符串,統計每個字符出現的次數。

  • Map操作,將文本分為多個子文本,分發給多個Worker 進程進行統計
  • Reduce 操作,將多組worker 進程計算的結果匯總
  • Worker:為文本統計各個字符出現的次數

定義通信消息: 

struct word_count_t
{
    struct in_t: public msg_i
    {
        in_t():
            msg_i("word_count_t::in_t")
        {}
        string encode()
        {
            return (init_encoder() << str).get_buff();
        }
        void decode(const string& src_buff_)
        {
            init_decoder(src_buff_) >> str;
        }
        string str;
    };

    struct out_t: public msg_i
    {
        out_t():
            msg_i("word_count_t::out_t")
        {}

        string encode()
        {
            return (init_encoder() << value).get_buff();
        }

        void decode(const string& src_buff_)
        {
            init_decoder(src_buff_) >> value;
        }

        map<char, int> value;
    };
};

定義woker的接口:

class worker_t
{
public:
    void word_count(word_count_t::in_t& in_msg_, rpc_callcack_t<word_count_t::out_t>& cb_)
    {
        //! close user socket
        word_count_t::out_t out;
        for (size_t i = 0; i < in_msg_.str.size(); ++i)
        {
            map<int, int>::iterator it = out.value.find(in_msg_.str[i]);
            if (it != out.value.end())
            {
                it->second += 1;
            }
            else
            {
                out.value[in_msg_.str[i]] = 1;
            }
        }
        cb_(out);
    }
};

worker_t worker;

    for (int i = 0; i < 5; ++i)
    {
         singleton_t<msg_bus_t>::instance().create_service("worker", 1)
            .bind_service(&worker)
            .reg(&worker_t::word_count);
    }

模擬Map/reduce 操作:

    struct lambda_t
    {
        static void reduce(word_count_t::out_t& msg_, map<int, int>* result_, size_t* size_)
        {
            for (map<int, int>::iterator it = msg_.value.begin(); it != msg_.value.end(); ++it)
            {
                map<int, int>::iterator it2 = result_->find(it->first);

                if (it2 != result_->end())
                {
                    it2->second += it->second;
                }
                else
                {
                    (*result_)[it->first] = it->second;
                }
            }

            if (-- size_ == 0)
            {
                //reduce end!!!!!!!!!!!!!!!!
                delete result_;
                delete size_;
            }
        }

        static void do_map(const char** p, size_t size_)
        {
            map<int, int>* result  = new map<int, int>();
            size_t*    dest_size   = new size_t();
            *dest_size = size_;

            for (size_t i = 0; i < size_; ++i)
            {
                word_count_t::in_t in;
                in.str = p[i];

                singleton_t<msg_bus_t>::instance()
                    .get_service_group("worker")
                    ->get_service(1 + i % singleton_t<msg_bus_t>::instance().get_service_group("worker")->size())
                    ->async_call(in, binder_t::callback(&lambda_t::reduce, result, dest_size));
            }
        }
    };

    const char* str_vec[] = {"oh nice", "oh fuck", "oh no", "oh dear", "oh wonderful", "oh bingo"};
    lambda_t::do_map(str_vec, 6);

 

總結:

FFLIB 使進程間通信更容易

source code:  https://ffown.googlecode.com/svn/trunk

示例代碼目錄:example/tutorial


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM