Javascript小技巧,去掉小數位並且不會四舍五入


   1:  var n3 = 52.3685;
   2:  document.writeln(n3 >> 0);// 52
   3:  可以去掉小數。

如上代碼,就是這么簡單

右移位操作導致小數部分丟失,為何會這樣呢?左移位可以嗎?移位操作是否都有如此功能呢?

帶着疑問又寫了一段代碼用來測試以上想法,繼續上代碼

   1:  {
   2:      n = 52.123456;
   3:      //alert(typeof n);
   4:      alert(n);
   5:  }
   6:  //有符號右移
   7:  {
   8:      n = 52.123456;
   9:      var n2 = n >> 0;
  10:      //alert(typeof n2);
  11:      alert(n2);
  12:  }
  13:  //無符號右移
  14:  {
  15:      n = 52.123456;
  16:      var n3 = n >>> 0;
  17:      //alert(typeof n3);
  18:      alert(n3);
  19:  }
  20:  //左移0位
  21:  {
  22:      n = 52.123456;
  23:      var n4 = n << 0;
  24:      //alert(typeof n4);
  25:      alert(n4);
  26:  }
  27:  //按位或or
  28:  {
  29:      n = 52.123456;
  30:      var n5 = n | 0;
  31:      //alert(typeof n5);
  32:      alert(n5);
  33:  }
  34:  //按位異或xor
  35:  {
  36:      n = 52.123456;
  37:      var n6 = n ^ 0;
  38:      //alert(typeof n6);
  39:      alert(n6);
  40:  }

那,這里不賣關子,直接給出測試結果來:以上五種方法均可以去掉小數點;然而為什么會這樣呢?
翻翻EAMCScript規范吧,或許里邊會有答案,見http://bclary.com/2004/11/07/#a-9.5

 

先來看看位操作都做了什么,下邊是位操作的實現步驟,重點在第五,第六步

11.7.1 The Left Shift Operator (<< )

Performs a bitwise left shift operation on the left operand by the amount specified by the right operand.

The production ShiftExpression : ShiftExpression << AdditiveExpression is evaluated as follows:

1. Evaluate ShiftExpression.

2.Call GetValue(Result(1)).

3.Evaluate AdditiveExpression.

4. Call GetValue(Result(3)).

5.Call ToInt32(Result(2)).

6.Call ToUint32(Result(4)).

7.Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & 0x1F.

8.Left shift Result(5) by Result(7) bits. The result is a signed 32 bit integer.

9.Return Result(8).|

再來看看那鍋ToInt32干了什么,重點在第三步
9.5 ToInt32: (Signed 32 Bit Integer)

The operator ToInt32 converts its argument to one of 232 integer values in the range -231 through 231-1, inclusive. This operator functions as follows:

1. Call ToNumber on the input argument.

2. If Result(1) is NaN, +0, -0, +∞, or -∞, return +0.

3. Compute sign(Result(1)) * floor(abs(Result(1))).

4. Compute Result(3) modulo 232 ; that is, a finite integer value k of Number type with positive sign and less than 232 in magnitude such the mathematical difference of Result(3) and k is mathematically an integer multiple of 232 .

5. If Result(4) is greater than or equal to 231 , return Result(4)-232 , otherwise return Result(4).

 

最后來看那個floor是什么意思,這里重點看第三步的后半拉,就是那個floor是干什么滴

floor(x) = x-(x modulo 1)

看見沒,就在這一步把小數干掉了

Floor(x) 等於x減去x模上1

N= 52.123456 – 52.123456%1

=52.123456-0.1234559999999

=52

 

搜代斯吶,春節快樂~


 

 
 
 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM