一、BERT整体结构 BERT主要用了Transformer的Encoder,而没有用其Decoder,我想是因为BERT是一个预训练模型,只要学到其中语义关系即可,不需要去解码完成具体 ...
一、BERT整体结构 BERT主要用了Transformer的Encoder,而没有用其Decoder,我想是因为BERT是一个预训练模型,只要学到其中语义关系即可,不需要去解码完成具体 ...
一、背景介绍 BERT和RoBERTa在文本语义相似度等句子对的回归任务上,已经达到了SOTA的结果。但是,它们都需要把两个句子同时喂到网络中,这样会导致巨大的计算开销:从10000个句子中找出 ...
一、P-R曲线 P-R曲线刻画查准率和查全率之间的关系,查准率指的是在所有预测为正例的数据中,真正例所占的比例,查全率是指预测为真正例的数据占所有正例数据的比例。 即:查准率P=TP/(TP ...
一、图示两种方式的不同 LN:Layer Normalization,LN是“横”着来的,对一个样本,不同的神经元neuron间做归一化。 BN:Batch Normalization,BN是“竖 ...
1、知识点 2、中文数据清洗(使用停用词) 3、英文数据清洗(使用停用词) 4、nltk的停用词进行数据清洗 ...
1、知识点 2、代码 ...
工具包:https://taku910.github.io/crfpp/#tips 语料:http://sighan.cs.uchicago.edu/bakeoff2005/ 安装: 1)下载l ...
一、Layer Normalization公式 1)计算各层的期望μ和标注差σ l表示第l个隐藏层,H表示该层的节点数,a表示某一个节点在激活前的值,即a=w*x。 2)标准化 g和b ...
概率有向图又称为贝叶斯网络,概率无向图又称为马尔科夫网络。具体地,他们的核心差异表现在如何求 ,即怎么表示 这个的联合概率。 概率图模型的优点: 提供了一个简单的方式将概率模 ...
一、概述: GRU(Gate Recurrent Unit)是LSTM网络的一种效果很好的变体,它较LSTM网络的结构更加简单,而且效果也很好,因此也是当前非常流形的一种网络。GRU既然是LSTM的 ...