特征值之积等于矩阵行列式 对于$n$阶方阵$A$,我们可以解$\lambda$的$n$次方程 $|A-\lambda E|=0$ 来求$A$的特征值。又因为在复数域内,$A$一定存在$n ...
特征值之积等于矩阵行列式 对于$n$阶方阵$A$,我们可以解$\lambda$的$n$次方程 $|A-\lambda E|=0$ 来求$A$的特征值。又因为在复数域内,$A$一定存在$n ...
幂法是通过迭代来计算矩阵的主特征值(按模最大的特征值)与其对应特征向量的方法,适合于用于大型稀疏矩阵。 基本定义 设$A = (a_{ij})\in R^{n\times n}$,其特征值 ...
虽然不是什么有应用价值的定理,但是每次看到实对称矩阵时总会有疑惑,现在记录下来。 证明 设有实对称矩阵$A$,它的特征值与对应的特征向量分别为$\lambda,x$,另外记$\overli ...
在深度学习中,我们通常对模型进行抽样并计算与真实样本之间的损失,来估计模型分布与真实分布之间的差异。并且损失可以定义得很简单,比如二范数即可。但是对于已知参数的两个确定分布之间的差异,我们就要通过 ...
PCA(Principal Components Analysis)主成分分析是一个简单的机器学习算法,利用正交变换把由线性相关变量表示的观测数据转换为由少量线性无关比变量表示的数据,实现降维的同 ...