矩阵乘法的几何意义
从投影的角度理解矩阵乘法: 向量x在以ai作为每个坐标轴单位向量的新坐标系的坐标 通俗讲:在矩阵中,以矩阵中的行矩阵作为一个具体的点和原点的连线作为坐标轴,所有的行也是这样从而组成一个坐标系,求原 ...
从投影的角度理解矩阵乘法: 向量x在以ai作为每个坐标轴单位向量的新坐标系的坐标 通俗讲:在矩阵中,以矩阵中的行矩阵作为一个具体的点和原点的连线作为坐标轴,所有的行也是这样从而组成一个坐标系,求原 ...
线性可分是指能使用线性组合组成的超平面将两类集合分开,线性不可分则没有能将两类集合分开的超平面 线性可分的特点:低维转高维,还能保持原来的线性可分性的特点;但是高维转低维就不能保持原来的线性可分性 ...
n维超球体的体积的变化的特点:当n<=7的时候,体积是增大的;当n>7的时候,体积是缩小的,可以小到0 因此可以从中推出,如果以固定的半径进行取样,这取到的样本的数量是先增大,然后再缩小 ...