反向传播(Back Propagation)
反向传播(Back Propagation) 通常在设计好一个神经网络后,参数的数量可能会达到百万级别。而我们利用梯度下降去跟新参数的过程如(1)。但是在计算百万级别的参数时,需要一种有效计 ...
反向传播(Back Propagation) 通常在设计好一个神经网络后,参数的数量可能会达到百万级别。而我们利用梯度下降去跟新参数的过程如(1)。但是在计算百万级别的参数时,需要一种有效计 ...
二分类 分类问题是机器学习中非常重要的一个课题。现实生活中有很多实际的二分类场景,如对于借贷问题,我们会根据某个人的收入、存款、职业、年龄等因素进行分析,判断是否进行借贷;对于一封邮件,根据邮件内 ...
梯度下降(Gradient descent) 在有监督学习中,我们通常会构造一个损失函数来衡量实际输出和训练标签间的差异。通过不断更新参数,来使损失函数的值尽可能的小。梯度下降就是用来计算如 ...
CNN(Convolutional Neural Network) 卷积神经网络(简称CNN)最早可以追溯到20世纪60年代,Hubel等人通过对猫视觉皮层细胞的研究表明,大脑对外界获取的信 ...