一、激活函数 1.什么是激活函数 激活函数: 就是在神经网络的神经元上运行的函数,负责将神经元的输入映射到输出端。 2.为什么要有激活函数 如果不用激活函数,每一层的输出都是上一层 ...
一、激活函数 1.什么是激活函数 激活函数: 就是在神经网络的神经元上运行的函数,负责将神经元的输入映射到输出端。 2.为什么要有激活函数 如果不用激活函数,每一层的输出都是上一层 ...
分类问题的评价指标是准确率,那么回归算法的评价指标就是MSE,RMSE,MAE、R-Squared。 MSE和MAE适用于误差相对明显的时候,大的误差也有比较高的权重,RMSE ...
一、无约束优化 对于无约束的优化问题,直接令梯度等于0求解。 如果一个函数$f$是凸函数,那么可以直接通过$f(x)$的梯度等于0来求得全局极小值点。 二、有约束优化 ...
1.余弦距离 适用场景:余弦相似度衡量的是维度间取值方向的一致性,注重维度之间的差异,不注重数值上的差异。 举例:如某T恤从100块降到了50块(A(100,50)),某西装从1000块降到了50 ...
0范数:向量中非零元素的个数。 1范数:为绝对值之和。1范数和0范数可以实现稀疏,1因具有比L0更好的优化求解特性而被广泛应用。 2范数:就是通常意义上的模,L2范数是指向量各元素的平方 ...
以二元函数为例,$f(x,y)$,对于任意单位方向$u$,假设$u$是$x$轴的夹角,那么函数$f(x,y)$在$u$这个方向上的变化率为: $f_x(x,y) \cos \alpha + f_y ...
AUC(Area under Curve):Roc曲线下的面积,介于0.1和1之间。Auc作为数值可以直观的评价分类器的好坏,值越大越好。 首先AUC值是一个概率值,当你随机挑选一个正样本以 ...
一、AIC(Akaike information Criterion)准则 二、BIC(Bayesian information Criterion)准则 参考文献: ...
PLA可以解决线性分类问题,那非线性问题怎么解决? 1、手动非线性转换 2、核方法 3、神经网络 无须手动设计非线性转换,能够让模型仔细学习 ...
梯度的方向 梯度:如果函数是一维的变量,则梯度就是导数的方向;如果是大于一维的,梯度就是在这个点的法向量,并指向数值更高的等值线。比如函数f(x,y), 分别对x,y求 ...