一,伯努利分布(bernouli distribution) 又叫做0-1分布,指一次随机试验,结果只有两种。也就是一个随机变量的取值只有0和1。B(1,p)">记为: 0-1分布 或B(1,p ...
一,伯努利分布(bernouli distribution) 又叫做0-1分布,指一次随机试验,结果只有两种。也就是一个随机变量的取值只有0和1。B(1,p)">记为: 0-1分布 或B(1,p ...
项目中出现了二分类数据不平横问题,研究总结下对于类别不平横问题的处理经验: 为什么类别不平横会影响模型的输出? 许多模型的输出类别是基于阈值的,例如逻辑回归中小于0.5的为反例,大于则为正例。 ...
1*1的卷积核在NIN、Googlenet中被广泛使用,但其到底有什么作用也是一直困扰的问题,这里总结和归纳下在网上查到的自认为很合理的一些答案,包括1)跨通道的特征整合2)特征通道的升维和降维 3 ...
1 过拟合的概念? 首先我们来解释一下过拟合的概念? 过拟合就是训练出来的模型在训练集上表现很好,但是在测试集上表现较差的一种现象!下图给出例子: 我们将上图第三个模型解释为出现了过拟合现象 ...
学习率的调整 从梯度下降算法的角度来说,通过选择合适的学习率,可以使梯度下降法得到更好的性能。学习率,即参数到达最优值过程的速度快慢,如Andrew Ng的Stanford公开课程所说,假如你从山峰 ...
卷积中的特征图大小计算方式有两种,分别是‘VALID’和‘SAME’,卷积和池化都适用,卷积除不尽的结果都向下取整,池化除不尽的结果都向上取整。 1.如果计算方式采用'VALID',则: ...
在机器学习的优化问题中,梯度下降法和牛顿法是常用的两种凸函数求极值的方法,他们都是为了求得目标函数的近似解。在逻辑斯蒂回归模型的参数求解中,一般用改良的梯度下降法,也可以用牛顿法。由于两种方法有些相似 ...
数据稀疏问题严重制约着协同过满推荐系统的发展。对于大型商务网站来说,由于产品和用户数量都很庞大,用户评分产品一般不超过产品总数的1%,两个用户共同评分的产品更是少之又少,解决数据稀疏问题是提高推荐 ...
ReLU激活功能并不完美。 它有一个被称为 “ReLU 死区” 的问题:在训练过程中,一些神经元会“死亡”,即它们停止输出 0 以外的任何东西。在某些情况下,你可能会发现你网络的一半神经元已经 ...
传统BP vs CNN 存在2个问题 传统BP网络存在的问题: 权值太多,计算量太大 权值太多,需要大量样本进行训练 传统的BP来处理图像问题的话因为计算权值太多太大。 ...