Laplace分布的概率密度函数的形式是这样的: $p(x) = \frac{1}{2 \lambda} e^{-\frac{\vert x –\mu \vert}{\lambda}}$ 一般$ ...
Laplace分布的概率密度函数的形式是这样的: $p(x) = \frac{1}{2 \lambda} e^{-\frac{\vert x –\mu \vert}{\lambda}}$ 一般$ ...
差分隐私的由来 想要在一个统计数据库里面保护用户的隐私,那么理想的隐私定义是这样的:访问一个统计数据库而不能够泄露在这个数据库中关于个人的信息。也就是说统计数据库应该提供一个统计值,但是对于个人 ...
数据的隐私保护问题最早由统计学家Dalenius 在20世纪70年代末提出,他认为,保护数据库中的隐私信息,就是要使任何用户(包括合法用户和潜在的攻击者)在访问数据库的过程中无法获取关于任意个体的确切 ...
L2-Reconstruction Attacks 本节课的目的在于正式地讨论隐私,但是我们不讨论算法本身有多隐私,取而代之去讨论一个算法隐私性有多么的不可靠。并且聚焦于 Dinur 与 Nissi ...
NIPS 2020:GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators 阅读时 ...
在实践中,通常使用拉普拉斯机制和指数机制来实现差分隐私。拉普拉斯机制用于数值型结果的保护,指数机制用于离散型结果的保护。 拉普拉斯机制 拉普拉斯机制通过向确切的查询结果中加入服从拉普拉斯分布的随机 ...