在线学习和在线凸优化(online learning and online convex optimization)—凸化方法4
一些在线预测问题可以转化到在线凸优化框架中。下面介绍两种凸化技术: 一些在线预测问题似乎不适合在线凸优化框架。例如,在线分类问题中,预测域(predictions domain)或损失函数不 ...
一些在线预测问题可以转化到在线凸优化框架中。下面介绍两种凸化技术: 一些在线预测问题似乎不适合在线凸优化框架。例如,在线分类问题中,预测域(predictions domain)或损失函数不 ...
近年来,许多有效的在线学习算法的设计受到凸优化工具的影响。 此外,据观察,大多数先前提出的有效算法可以基于以下优雅模型联合分析: 凸集的定义: 一个向量 的Regret ...
最自然的学习规则是使用任何在过去回合中损失最小的向量。 这与Consistent算法的精神相同,它在在线凸优化中通常被称为Follow-The-Leader,最小化累积损失。 对于任何t: ...