机器学习算法一般步骤
1、使用机器学习来解决问题,我们用数学语言来描述它,然后建立一个模型,例如回归模型或者分类模型等来描述这个问题; 2、通过最小化误差、最大似然、最大后验概率等等建立模型的代价函数,转化为最优 ...
1、使用机器学习来解决问题,我们用数学语言来描述它,然后建立一个模型,例如回归模型或者分类模型等来描述这个问题; 2、通过最小化误差、最大似然、最大后验概率等等建立模型的代价函数,转化为最优 ...
机器学习算法及代码实现–决策树 1、决策树 决策树算法的核心在于决策树的构建,每次选择让整体数据香农熵(描述数据的混乱程度)减小最多的特征,使用其特征值对数据进行划分,每次消 ...
摘要 机器学习算法分类:监督学习、半监督学习、无监督学习、强化学习 基本的机器学习算法:线性回归、支持向量机(SVM)、最近邻居(KNN)、逻辑回归、决策树、k平均、随机森林、朴素贝叶斯、 ...
机器学习算法及代码实现–支持向量机 1、支持向量机 SVM希望通过N-1维的分隔超平面线性分开N维的数据,距离分隔超平面最近的点被叫做支持向量,我们利用SMO(SVM实现方法之一)最大化 ...