空洞卷积(atrous convolution)又叫扩张卷积(dilated convolution),其实就是向卷积层引入了一个称为“扩张率(dilation rate)”的新参数,这个参数定义了卷 ...
空洞卷积(atrous convolution)又叫扩张卷积(dilated convolution),其实就是向卷积层引入了一个称为“扩张率(dilation rate)”的新参数,这个参数定义了卷 ...
对于神经网络的全连接层,前面已经使用矩阵的运算方式实现过,本篇将引入tensorflow中层的概念, 正式使用deep learning相关的API搭建一个全连接神经网络。下面是全连接神经网络的结构图 ...
玩过深度学习图像处理的都知道,对于一张分辨率超大的图片,我们往往不会采取直接压平读入的方式喂入神经网络,而是将它切成一小块一小块的去读,这样的好处就是可以加快读取速度并且减少内存的占用。就拿医学图像处 ...
本篇记录一下TensorFlow中张量的排序方法 tf.sort和tf.argsort 计算准确率实例: ...
在tensorflow2.0版本之前,1.x版本的tensorflow的基本数据类型有计算图(Computation Graph)和张量(Tensor)两种,但tensorflow2.0之后的版本取消 ...
1.无监督学习 无监督学习和监督学习是机器学习的两个方向,监督学习主要适用于已经标注好的数据集(如mnist分类问题),无监督学习则是希望计算机完成复杂的标注任务,简单的解释就是——教机器自己学习, ...
维度变换是tensorflow中的重要模块之一,前面mnist实战模块我们使用了图片数据的压平操作,它就是维度变换的应用之一。 在详解维度变换的方法之前,这里先介绍一下View(视图)的概念。所谓V ...
先来看一下有哪些接口用来进行张量的合并与分割: tf.concat用来进行张量的拼接,tf.stack用来进行张量的堆叠,tf.split用来进行张量的分割,tf.unstack是tf.split的 ...
今天通过论坛偶然知道,在mnist之后,还出现了一个旨在代替经典mnist数据集的Fashion MNIST,同mnist一样,它也是被用作深度学习程序的“hello world”,而且也是由70k张 ...
在tf.keras中,metrics其实就是起到了一个测量表的作用,即测量损失或者模型精度的变化。metrics的使用分为以下四步: step1:Build a meter step ...