深度学习中的规范化
这篇文章介绍深度学习四种主流的规范化, 分别是Batch Normalization(BN[9]), Layer Normalization(LN[7]), Instance Normalizatio ...
这篇文章介绍深度学习四种主流的规范化, 分别是Batch Normalization(BN[9]), Layer Normalization(LN[7]), Instance Normalizatio ...
动机: 防止隐层分布多次改变,BN让每个隐层节点的激活输入分布缩小到-1和1之间. 好处: 缩小输入空间,从而降低调参难度;防止梯度爆炸/消失,从而加速网络收敛. BN计算公式: ...
BatchNorm, 批规范化,主要用于解决协方差偏移问题,主要分三部分: 计算batch均值和方差 规范化 仿射affine 算法内容如下: 需要说明几点: 均值 ...