花费 6 ms
SLAM入门之视觉里程计(1):特征点的匹配

SLAM 主要分为两个部分:前端和后端,前端也就是视觉里程计(VO),它根据相邻图像的信息粗略的估计出相机的运动,给后端提供较好的初始值。VO的实现方法可以根据是否需要提取特征分为两类:基于特征点的方 ...

Thu Dec 21 06:01:00 CST 2017 9 30114
SLAM入门之视觉里程计(5):单应矩阵

在之前的博文OpenCV,计算两幅图像的单应矩阵,介绍调用OpenCV中的函数,通过4对对应的点的坐标计算两个图像之间单应矩阵\(H\),然后调用射影变换函数,将一幅图像变换到另一幅图像的视角中。当时 ...

Mon Jan 15 20:39:00 CST 2018 4 29283
SLAM入门之视觉里程计(2):相机模型(内参数,外参数)

相机成像的过程实际是将真实的三维空间中的三维点映射到成像平面(二维空间)过程,可以简单的使用小孔成像模型来描述该过程,以了解成像过程中三维空间到二位图像空间的变换过程。 本文包含两部分内容,首先介绍小 ...

Thu Dec 28 00:12:00 CST 2017 3 24238
SLAM入门之视觉里程计(3):两视图对极约束 基础矩阵

在上篇相机模型中介绍了图像的成像过程,场景中的三维点通过“小孔”映射到二维的图像平面,可以使用下面公式描述: \[x = MX $$其中,$c$是图像中的像点,$M$是一个$3\times4$ ...

Sun Dec 31 04:47:00 CST 2017 9 12850
SLAM入门之视觉里程计(4):基础矩阵的估计

在上篇文章中,介绍了三位场景中的同一个三维点在不同视角下的像点存在着一种约束关系:对极约束,基础矩阵是这种约束关系的代数表示,并且这种约束关系独立与场景的结构,只依赖与相机的内参和外参(相对位姿)。这 ...

Sat Jan 06 21:51:00 CST 2018 6 12520

 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM