由于受到计算机性能的影响,虽然LeNet在图像分类中取得了较好的成绩,但是并没有引起很多的关注。 知道2012年,Alex等人提出的AlexNet网络在ImageNet大赛上以远超第二名的成绩夺冠,卷 ...
由于受到计算机性能的影响,虽然LeNet在图像分类中取得了较好的成绩,但是并没有引起很多的关注。 知道2012年,Alex等人提出的AlexNet网络在ImageNet大赛上以远超第二名的成绩夺冠,卷 ...
本文从信息论和最大似然估计得角度推导交叉熵作为分类损失函数的依据。 从熵来看交叉熵损失 信息量 信息量来衡量一个事件的不确定性,一个事件发生的概率越大,不确定性越小,则其携带的信息量就越小。 ...
咸鱼了半年,年底了,把这半年做的关于目标的检测的内容总结下。 本文主要有两部分: 目标检测中的边框表示 Anchor相关的问题,R-CNN,SSD,YOLO 中的anchor 目标 ...
总结对比下\(L_1\) 损失函数,\(L_2\) 损失函数以及\(\text{Smooth} L_1\) 损失函数的优缺点。 均方误差MSE (\(L_2\) Loss) 均方误差(Mean S ...
本文是PyTorch使用过程中的的一些总结,有以下内容: 构建网络模型的方法 网络层的遍历 各层参数的遍历 模型的保存与加载 从预训练模型为网络参数赋值 主要涉及到以下函 ...
人群计数的方法分为传统的视频和图像人群计数算法以及基于深度学习的人群计数算法,深度学习方法由于能够方便高效地提取高层特征而获得优越的性能是传统方法无法比拟的。本文简单了秒速了近几年,基于单张图像利用C ...
本文算是对常用梯度图下降的算法综述,从方向导数开始得到梯度下降的原始算法,接着描述了动量梯度下降算法。 而由于超参数学习率对梯度下降的重要性,所以梯度算法就有多个自适应梯度下降算法。 主要有以下内容: ...
2014年,牛津大学计算机视觉组(Visual Geometry Group)和Google DeepMind公司的研究员一起研发出了新的深度卷积神经网络:VGGNet,并取得了ILSVRC2014比 ...
Object Detection,在给定的图像中,找到目标图像的位置,并标注出来。 或者是,图像中有那些目标,目标的位置在那。这个目标,是限定在数据集中包含的目标种类,比如数据集中有两种目标:狗,猫。 ...
设计好神经网络结构以及loss function 后,训练神经网络的步骤如下: 初始化权值参数 选择一个合适的梯度下降算法(例如:Adam,RMSprop等) 重复下面的迭代过程: ...