假设有这样的房间 如果将房间表示成点,然后用房间之间的连通关系表示成线,如下图所示: ...
总结回顾一下近期学习的RL算法,并给部分实现算法整理了流程图 贴了代码。 . value based 基于价值的算法 基于价值算法是通过对agent所属的environment的状态或者状态动作对进行评分。对于已经训练好的模型,agent只需要根据价值函数对当前状态选择评分最高的动作即可 对于正在训练的模型,我们通常将目标值 真实行动带来的反馈 和价值函数的预测值的差距作为loss训练价值函数。 ...
2022-04-20 22:13 1 745 推荐指数:
假设有这样的房间 如果将房间表示成点,然后用房间之间的连通关系表示成线,如下图所示: ...
1. 前言 Q-Learning算法也是时序差分算法的一种,和我们前面介绍的SARAS不同的是,SARSA算法遵从了交互序列,根据当前的真实行动进行价值估计;Q-Learning算法没有遵循交互序列,而是在当前时刻选择了使价值最大的行动。 2. Q-Learning Q-Learning算法 ...
DDPG原理和算法 DDPG原理和算法 背景描述 DDPG的定义和应用场景 PG ...
在上一篇文章中介绍了MDP与Bellman方程,MDP可以对强化学习的问题进行建模,Bellman提供了计算价值函数的迭代公式。但在实际问题中,我们往往无法准确获知MDP过程中的转移概率$P$,因此无法直接将解决 MDP 问题的经典思路 value iteration 和 policy ...
上篇文章 强化学习——时序差分 (TD) --- SARSA and Q-Learning 我们介绍了时序差分TD算法解决强化学习的评估和控制问题,TD对比MC有很多优势,比如TD有更低方差,可以学习不完整的序列。所以我们可以在策略控制循环中使用TD来代替MC。优于TD算法的诸多优点,因此现在主流 ...
】Q-Learning详解1、算法思想QLearning是强化学习算法中值迭代的算法,Q即为Q(s,a)就是 ...
在强化学习(八)价值函数的近似表示与Deep Q-Learning中,我们讲到了Deep Q-Learning(NIPS 2013)的算法和代码,在这个算法基础上,有很多Deep Q-Learning(以下简称DQN)的改进版,今天我们来讨论DQN的第一个改进版Nature DQN ...
本文用于基本入门理解。 强化学习的基本理论 : R, S, A 这些就不说了。 先设想两个场景: 一。 1个 5x5 的 格子图, 里面有一个目标点, 2个死亡点二。 一个迷宫, 一个出发点, 3处 分叉点, 5个死角, 1条活路Q-learning 的概念 其实就是一个算法 ...