训练过程中的误差,就是训练误差。 在验证集上进行交叉验证选择参数(调参),最终模型在验证集上的误差就是验证误差。 训练完毕、调参完毕的模型,在新的测试集上的误差,就是测试误差。 假如所有的数据来自一个整体,模型在这个整体上的误差,就是泛化误差。通常说来,测试误差的平均值或者说期望就是泛化误差 ...
目录 引言 经验误差 测试误差 泛化误差定义 泛化误差的偏差 方差分解 偏差 方差图解 偏差 方差tradeoff 模型复杂度 bagging和boosting 解决偏差 方差问题 针对偏差:避免欠拟合 针对方差:避免过拟合 引言 在构建机器学习模型时,通常需要先采集数据,然后将数据分为训练集 验证集 测试集。训练集用于训练模型,验证集 如果数据量比较少可以采用交叉验证的方式 用于调整超参数,测 ...
2022-04-12 21:18 0 1300 推荐指数:
训练过程中的误差,就是训练误差。 在验证集上进行交叉验证选择参数(调参),最终模型在验证集上的误差就是验证误差。 训练完毕、调参完毕的模型,在新的测试集上的误差,就是测试误差。 假如所有的数据来自一个整体,模型在这个整体上的误差,就是泛化误差。通常说来,测试误差的平均值或者说期望就是泛化误差 ...
https://blog.csdn.net/ChenVast/article/details/81385018 符号 涵义 测试样本 数据集 在数 ...
一、经验误差与拟合 1、模型的评估 机器学习的目的是使学到的模型不仅对已知数据而且对未知数据都能有很好的预测能力。不同的学习方法会训练出不同的模型,不同的模型可能会对未知数据作出不同的预测,所以,如何评价模型好坏,并选择出好的模型是我们所学的重点 ...
摘要:以前在机器学习中一直使用经验风险来逼近真实风险,但是事实上大多数情况经验风险并不能够准确逼近真实风险。后来业界就提出了泛化误差的概念(generalization error),在机器学习中泛化误差是用来衡量一个学习机器推广未知数据的能力,即根据从样本数据中学习到的规则能够应用到新数据的能力 ...
准: bias描述的是根据样本拟合出的模型的输出预测结果的期望与样本真实结果的差距,简单讲,就是在样本上拟合的好不好。要想在bias上表现好,low bias,就得复杂化模型,增加模型的参数,但这样 ...
方差:是每个样本值与全体样本值的平均数之差的平方值的平均数 标准差:是方差的算术平方根。标准差能反映一个数据集的离散程度 均方误差:对每一个样本,利用机器学习模型判定的类型与真实类型的差值的平方的平均数。(它是观测值与真值偏差的平方与观测次数n比值) 均方根误差(亦称标准误差):它是观测值 ...
原文:http://www.zhihu.com/question/20448464 5 个回答 .zm-item-answer"}" data-init="{" ...
偏差、方差的权衡(trade-off): 偏差(bias)和方差(variance)是统计学的概念,刚进公司的时候,看到每个人的嘴里随时蹦出这两个词,觉得很可怕。首先得明确的,方差是多个模型间的比较,而非对一个模型而言的,对于单独的一个模型,比如说: 这样的一个给定了具体 ...