机器学习中的Bias(偏差),Error(误差),和Variance(方差)有什么区别和联系?


 

原文:http://www.zhihu.com/question/20448464

5 个回答

 

原文:http://www.zhihu.com/question/27068705

机器学习中的Bias(偏差),Error(误差),和Variance(方差)有什么区别和联系?修改

最近在学习机器学习,在学到交叉验证的时候,有一块内容特别的让我困惑,Error可以理解为在测试数据上跑出来的 不准确率 ,即为 (1-准确率)

在训练数据上面,我们可以进行交叉验证(Cross-Validation)。
一种方法叫做K-fold Cross Validation (K折交叉验证), K折交叉验证,初始采样分割成K个子样本,一个单独的子样本被保留作为验证模型的数据,其他K-1个样本用来训练。交叉验证重复K次,每个 子样本验证一次,平均K次的结果或者使用其它结合方式,最终得到一个单一估测。

当K值大的时候, 我们会有 更少的Bias(偏差), 更多的Variance。
当K值小的时候, 我们会有 更多的Bias(偏差), 更少的Variance。

我十分不理解上述的描述,求大神来解释到底什么是Bias, Error,和Variance?
交叉验证,对于这三个东西到底有什么影响? 修改
举报
添加评论 
分享
  • 邀请回答
 
按投票排序按时间排序

12 个回答


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM