以下内容来自 https://zhuanlan.zhihu.com/p/37091549 为什么有图卷积神经网络(引言,可跳过) 自2012年以来,深度学习在计算机视觉以及自然语言处理两个领域取得了巨大的成功。和传统方法相比,它好在哪里呢? 假设有一张图,要做分类,传统方法需要手动提取 ...
图数据 , 板块 目录: 引入 图数据 图卷积神经网络综述 图卷积神经网络的实践 .引入 卷积神经网络到图数据 qquad 卷积神经网络的发展极大促进了深度学习的发展,广泛应用于图像识别和自然语言处理领域,卷积神经网络几乎能做到将很多问题毕其功于一役,以下特点可谓功不可没: 利用平移不变性抽取局部的特征 局部不变性 通过多层的卷积来实现低级到高级抽象特征的抽取 权重共享,降低训练成本 qquad ...
2022-04-07 15:26 0 644 推荐指数:
以下内容来自 https://zhuanlan.zhihu.com/p/37091549 为什么有图卷积神经网络(引言,可跳过) 自2012年以来,深度学习在计算机视觉以及自然语言处理两个领域取得了巨大的成功。和传统方法相比,它好在哪里呢? 假设有一张图,要做分类,传统方法需要手动提取 ...
https://www.cnblogs.com/hellojamest/p/11678324.html 图卷积网络Graph Convolutional Nueral Network,简称GCN,最近两年大热,取得不少进展。不得不专门为GCN开一个新篇章,表示其重要程度。本文结合大量参考文献 ...
图神经网络 (GNN) 是一系列神经网络,可以自然地对图结构数据进行操作。与孤立地考虑单个实体的模型相比,通过从底层图中提取和利用特征,GNN 可以对这些交互中的实体做出更明智的预测。 GNN 并不是唯一可用于对图结构化数据进行建模的工具:图内核和随机游走方法层级是一些最流行的工具。然而,今天 ...
前面废点话: 终于!来到了GNN最相关的内容!前面四章来说都是一些预备知识,或者说是介绍性的认识的东西,其实和GNN的关系不是特别大。但从这一章开始一上来就是GNN最核心的东西:图信号处理。这部分其实非常关键,但大部分人学的时候可能都会忽视这一点,认为自己可以直接进入GCN的部分,这是 ...
本文属于图神经网络的系列文章,文章目录如下: 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一) 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (二) 从图(Graph)到图卷积(Graph ...
本文属于图神经网络的系列文章,文章目录如下: 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一) 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (二) 从图(Graph)到图卷积(Graph ...
本文属于图神经网络的系列文章,文章目录如下: 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一) 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (二) 从图(Graph)到图卷积(Graph ...