1. 迭代公式建立 将在点的Taylor展开如下: 一阶泰勒多项式: 近似于 解出x记为,则 2. 牛顿迭代法的几何解析 在处做曲线的切线,切线方程为: 令得切线与x轴的交点坐标为,这就是牛顿迭代法的迭代公式。因此,牛顿法又称“切线法”。 Newton迭代法的特点是 ...
题目描述 编写程序,使用牛顿迭代法求方程在x附近的一个实根。 练习要求 请给出源代码程序和运行测试结果,源代码程序要求添加必要的注释。 输入格式 请在一行中输入方程系数a b c d和实数x,数据中间以空格为间隔。 输出格式 对每一组输入的数据,输出牛顿迭代法求出的实根 格式为保留小数点后 位,四舍五入 。 输入样例 . . . . . 输出样例 . 关于牛顿迭代法是什么,参考:如何通俗易懂地讲 ...
2022-03-18 22:24 0 878 推荐指数:
1. 迭代公式建立 将在点的Taylor展开如下: 一阶泰勒多项式: 近似于 解出x记为,则 2. 牛顿迭代法的几何解析 在处做曲线的切线,切线方程为: 令得切线与x轴的交点坐标为,这就是牛顿迭代法的迭代公式。因此,牛顿法又称“切线法”。 Newton迭代法的特点是 ...
一、导数 导数可以理解为某点的斜率。 泰勒公式: 在x -> x0的情况下,可以看成是: 这也是后面牛顿迭代法所用到的公式 二、牛顿迭代法 通过不断迭代,逐渐逼近零点 ...
牛顿迭代法 求近似解 概念 牛顿法又称为牛顿-拉弗森方法,它是一种在实数域和复数域上近似求解方程的方法。方法使用函数\(f(x)\)的泰勒级数的前面几项来寻找方程\(f(x)=0\)的根。 注意:牛顿法只能逼近解,不能计算精确解。 原理 利用泰勒公式,在\(x_0\)处展开,展开到一阶 ...
什么是牛顿迭代法 牛顿-拉弗森方法 Newton-Raphson method 用来近似求解多项式的根 公式 顾名思义,该方法采用迭代的思想,已知曲线方程\(f(x)\), 在\(x_n\)点做切线,求\(x_{n+1}\) 在\(x_n\)点的切线方程为 \[f(x_n)+f ...
迭代法在程序设计中也是一种常见的递推方法,即:给定一个原始值,按照某个规则计算一个新的值, 然后将这个计算出的新值作为新的变量值带入规则中进行下一步计算,在满足某种条件后返回最后的 计算结果;牛顿迭代法是用于多项式方程求解根的方法,在只有笔和纸的年代,这个方法给了人们一个 无限逼近 ...
牛顿法,大致的思想是用泰勒公式的前几项来代替原来的函数,然后对函数进行求解和优化。牛顿法和应用于最优化的牛顿法稍微有些差别。 牛顿法 牛顿法用来迭代的求解一个方程的解,原理如下: 对于一个函数f(x),它的泰勒级数展开式是这样的 \[f(x) = f(x_0) + f'(x_0 ...
在MIT公开课《计算机科学与编程导论》的第五讲中,讲到编写求解平方根的函数sqrt时,提到了牛顿迭代法。今天仔细一查,发现这是一个用途很广、很牛的计算方法。 首先,考虑如何编写一个开平方根的函数sqrt(float num, float e)。参数num是要求开平方 ...