一、参考资料: https://zhuanlan.zhihu.com/p/61215293 https://www.zmonster.me/2019/12/08/few-shot-learning.html 二、论文: 1、 Metric Based 1.1 ...
一 与传统的监督学习不同,few shot leaning的目标是让机器学会学习 使用一个大型的数据集训练模型,训练完成后,给出两张图片,让模型分辨这两张图片是否属于同一种事物。比如训练数据集中有老虎 大象 汽车 鹦鹉等图片样本,训练完毕后给模型输入两张兔子的图片让模型判断是否是同一种事物,或者给模型兔子和狗的图片去判断。 训练的目的是靠着Support Set提供的一点信息,让模型判断出Quer ...
2022-03-18 15:08 0 932 推荐指数:
一、参考资料: https://zhuanlan.zhihu.com/p/61215293 https://www.zmonster.me/2019/12/08/few-shot-learning.html 二、论文: 1、 Metric Based 1.1 ...
纹识别、药物研发、推荐冷启动、欺诈识别等样本规模小或数据收集成本高的场景),Few-Shot Learnin ...
One-shot learning Zero-shot learning Multi-shot learning Sparse Fine-grained Fine-tune 背景:CVPR 2018收录了4篇关于小样本学习的论文,而到了CVPR 2019,这一数量激增到了近20篇 ...
摘要:人工智能在数据密集型应用中取得了成功,但它缺乏从有限的示例中学习的能力。为了解决这一问题,提出了少镜头学习(FSL)。利用先验知识,可以快速地从有限监督经验的新任务中归纳出来。为了全面了解FSL,我们进行了一项调查研究。我们首先要澄清对FSL的正式定义。进而得出不可靠经验风险最小化是FSL ...
小样本学习 小样本学习旨在解决在数据有限的机器学习任务。 小样本学习的核心问题是经验风险最小化是不可靠的。 什么是小样本学习 Machine Learning : A computer program is said to learn from experience E ...
1,引言 现在的机器学习和深度学习任务都依赖于大量的标注数据来训练,而人类的学习过程并不是这样的,人类可以利用过去学得的知识,在新的问题上只需要少量的样例就可以学得很好。FSL就是这样一个任务,期待像人类一样,能利用一些先验知识,在新的问题上只需要少量样本。 2,概述 本节给出 ...
Few-shot Learning ShusenWang的课 问题定义 Few-shot Learning 是 Meta Learning 在监督学习领域的应用。Meta Learning,又称为learning to learn,该算法旨在让模型学会“学习”,能够处理类型相似的任务 ...
representative meta- learning methods for few-shot image classif ...