1.2 Euler 方法及其改进方法 1.2.1 Euler 方法 用 \(f(x_n, y_n)\) 代替式 \((1.2)\) 中的 \(\varphi_n\),得到差分方程初值问题: \[\left\{ \begin{align*} & y_{n+1} = y_{n ...
. 相容性 收敛性与稳定性 . . 相容性与收敛性 定义相容性。 非数学性质严格 定义 . . 相容性 当步长 h to 时,差分方程是否无限逼近微分方程。 定义收敛性。 非数学性质严格 定义 . . 收敛性 对 forall x in Omega ,当步长 h to 时,差分方程的解是否无限逼近微分方程的解。 显式单步法的相容性 对于一个微分方程数值解,考虑原问题 left begin ali ...
2022-03-07 11:50 0 1247 推荐指数:
1.2 Euler 方法及其改进方法 1.2.1 Euler 方法 用 \(f(x_n, y_n)\) 代替式 \((1.2)\) 中的 \(\varphi_n\),得到差分方程初值问题: \[\left\{ \begin{align*} & y_{n+1} = y_{n ...
10 常微分方程初值问题的数值解法 10.1 引言 包含自变量、未知函数以及未知函数导数或微分的方程称为微分方程。在微分方程中,如果自变量的个数只有一个,就称为常微分方程;如果自变量个数两个及以上,就称为偏微分方程。微分方程中出现的未知函数最高阶导数的阶称为微分方程的阶。如果未知函数\(y ...
本文写于资格考试前前夕,权以浅浅谈当整理复习 稳定性讨论主要基于 Finite Difference Methods for Ordinary and Partial Differential Equations (LeVeque, 2007) 首先大致梳理一下本文打算简单整理 ...
上一节简单介绍了可求解的一阶常微分方程的解法,因为大部分非线性方程是不可解的,所以需要给出解的存在性的证明。本节主要介绍一阶非线性常微分方程Cauchy问题$$(E)\,\,\,\,\,\frac{dy}{dx}=f(x,y),\,\,\,\,\,y(x_{0})=y_{0}.$$解的存在性 ...
2.2 差分格式 列出几个常用的数值微分公式。 引理 2.2.1 设 \(h>0\) 和 \(c\) 为常数 如果 \(g(x) \in C^2[c-h, c+h]\),则有 \[g(c) = \frac{1}{2} [g(c-h) + g ...
微分方程初值问题 初值问题\(\begin{cases}y^{\prime}=f(x, y)\\ y(x_{0})=y_{0}\end{cases}\)的解\(y=y(x)\)代表通过点\((x_0, y_0)\)的一条称为微分方程的积分曲线。积分曲线上的每一个点\((x, y)\)的切线斜率 ...
一阶线性微分方程经常在经济学中遇到,在此进行记录. 定义 形如以下形式的方程称为一阶线性微分方程。其特点是它关于未知函数y及其一阶导数是一次方程。 \[\frac{dy}{dx} + P(x) y = Q(x) \] 齐次形式 对于Q(x)=0的情况,称为一阶齐次线性微分方程 ...
本篇介绍一下一阶微分方程的求解方法,以及伯努利方程的特殊求解方法。这个应该是上学时高数课中的内容,现在用到了,温习一下。 顺便感叹一下,时间过得真快。 1. 定义 形如上式的方程称为一阶线性微分方程, 并且当Q(x)恒为零时称为齐次线性方程, Q(x)不恒为零时称为非齐次线性方程 ...