1. 正规变换 1.1 伴随变换 在上一篇的最后我们看到,满足一定内积性质的线性变换可以有很好的不变子空间分割,现在对更一般的形式进行讨论。设内积空间中有\(V=W\oplus W^{\perp}\),且\(W\)是线性变换\(\mathscr{A}\)的不变子空间,任取\(\alpha ...
一.二次型的概念和变换 .二次型 二次型,顾名思义,是用于研究二次的方程的,这类方程我们在解析几何中一定见过,如平面空间中的圆锥曲线方程等。这种类型的方程可以写成矩阵的形式,如下: 为了研究方便,我们经常将这里的x和y写成x 和x ,如下: 这个就是二次型的矩阵表示,通常,我们为了研究方便,都取矩阵为对称矩阵。 .二次型矩阵的几何意义 我们以平面直角坐标系中的圆锥曲线方程为例简单说一说二次型矩阵的 ...
2022-02-27 21:10 0 1127 推荐指数:
1. 正规变换 1.1 伴随变换 在上一篇的最后我们看到,满足一定内积性质的线性变换可以有很好的不变子空间分割,现在对更一般的形式进行讨论。设内积空间中有\(V=W\oplus W^{\perp}\),且\(W\)是线性变换\(\mathscr{A}\)的不变子空间,任取\(\alpha ...
「摘自刘二根和谢霖铨主编的《线性代数》」 二次型及其标准型 正定二次型,正定矩阵 ...
一、一般线性变换 1、对于一个典型的线性变换: $y=A\boldsymbol x=\left[ \begin{array}{cc} \boldsymbol w_1 & \boldsymbol w_2\end{array} \right]\left[ \begin{array}{cc ...
一.前言 这是我准备做的线性代数系列正式开始的第一章节,但是我不准备从行列式或者方程开始说起.在我的理解框架中,矩阵是核心内容,行列式和方程等内容都是工具或者待解决的一些问题.因此,我打算直接从矩阵展开自己的理解,在使用到行列式或者和方程有联系时再切入这些相关内容,因此我直接从矩阵的核心运算 ...
一.初等矩阵 将单位阵E经过一次变换得到的矩阵称为初等矩阵。初等矩阵都是方阵。这种初等变换有某一行(列)的n倍加到另一行(列)上、互换行列位置、某一行(列)全部乘以某实数三种基本情况。 每一个初等矩阵都可以写作单位阵左乘或右乘一个矩阵的形式。初等行变换是左乘,初等列变换时右乘,下面 ...
一、行列式性质 二、行列式的运算 1、 2、 3、 4、代数余子式 5、 6、多个A或M相加减 7、 三、矩阵运算(加减、相乘) 1、矩阵加减 2、矩阵相乘 3、矩阵取绝对值 四、转置、秩 ...
一.概述 在上一篇总结中,主要记录了矩阵用于线性方程组消元的情况,并且提到:方程组若有唯一解,那么方程组对应系数矩阵的秩(有效的方程个数)一定等于未知数的个数;当方程组中方程的个数多于未知数的个数时,多出来的方程一定可以用其他方程线性表示,因此这些多出来的方程是无效的(当方程组的秩等于未知数 ...
高等代数 5 二次型 二次型 二次型及其矩阵表示 设\(P\)是一数域,一个系数在数域\(P\)中的\(x_1,x_2,\cdots,x_n\)的二次齐次多项式 \[f(x_1,x_2,\cdots,x_n)= a_{11}x_1^2+2a_{12}x_1x_2+ ...